BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 29359158)

  • 1. Upregulation of
    Villareal MO; Kume S; Neffati M; Isoda H
    Biomed Res Int; 2017; 2017():8303671. PubMed ID: 29359158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diethylstilbestrol enhances melanogenesis via cAMP-PKA-mediating up-regulation of tyrosinase and MITF in mouse B16 melanoma cells.
    Jian D; Jiang D; Su J; Chen W; Hu X; Kuang Y; Xie H; Li J; Chen X
    Steroids; 2011 Nov; 76(12):1297-304. PubMed ID: 21745488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural stem cells inhibit melanin production by activation of Wnt inhibitors.
    Hwang I; Park JH; Park HS; Choi KA; Seol KC; Oh SI; Kang S; Hong S
    J Dermatol Sci; 2013 Dec; 72(3):274-83. PubMed ID: 24016750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The correlation of TRPM1 (Melastatin) mRNA expression with microphthalmia-associated transcription factor (MITF) and other melanogenesis-related proteins in normal and pathological skin, hair follicles and melanocytic nevi.
    Lu S; Slominski A; Yang SE; Sheehan C; Ross J; Carlson JA
    J Cutan Pathol; 2010 Apr; 37 Suppl 1(Suppl 1):26-40. PubMed ID: 20482673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein-coupled estrogen receptor enhances melanogenesis via cAMP-protein kinase (PKA) by upregulating microphthalmia-related transcription factor-tyrosinase in melanoma.
    Sun M; Xie HF; Tang Y; Lin SQ; Li JM; Sun SN; Hu XL; Huang YX; Shi W; Jian D
    J Steroid Biochem Mol Biol; 2017 Jan; 165(Pt B):236-246. PubMed ID: 27378491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Analysis of the Melanogenesis Inhibitory Effect of Saponins-Rich Fraction of
    Villareal MO; Chaochaiphat T; Makbal R; Gadhi C; Isoda H
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Downregulation of α-Melanocyte-Stimulating Hormone-Induced Activation of the Pax3-MITF-Tyrosinase Axis by Sorghum Ethanolic Extract in B16F10 Melanoma Cells.
    Lee DH; Ahn SS; Kim JB; Lim Y; Lee YH; Shin SY
    Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29865165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Arthrophytum scoparium inhibits melanogenesis through the down-regulation of tyrosinase and melanogenic gene expressions in B16 melanoma cells.
    Chao HC; Najjaa H; Villareal MO; Ksouri R; Han J; Neffati M; Isoda H
    Exp Dermatol; 2013 Feb; 22(2):131-6. PubMed ID: 23362872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UCHL1 Regulates Melanogenesis through Controlling MITF Stability in Human Melanocytes.
    Seo EY; Jin SP; Sohn KC; Park CH; Lee DH; Chung JH
    J Invest Dermatol; 2017 Aug; 137(8):1757-1765. PubMed ID: 28392346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. p21-activated kinase 4 critically regulates melanogenesis via activation of the CREB/MITF and β-catenin/MITF pathways.
    Yun CY; You ST; Kim JH; Chung JH; Han SB; Shin EY; Kim EG
    J Invest Dermatol; 2015 May; 135(5):1385-1394. PubMed ID: 25560280
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Ikarashi N; Fukuda N; Ochiai M; Sasaki M; Kon R; Sakai H; Hatanaka M; Kamei J
    Nutrients; 2020 Jul; 12(7):. PubMed ID: 32674403
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRTC3, a sensor and key regulator for melanogenesis, as a tunable therapeutic target for pigmentary disorders.
    Yoo H; Lee HR; Kim KH; Kim MA; Bang S; Kang YH; Kim WH; Song Y; Chang SE
    Theranostics; 2021; 11(20):9918-9936. PubMed ID: 34815795
    [No Abstract]   [Full Text] [Related]  

  • 13. GSK3beta inhibition promotes melanogenesis in mouse B16 melanoma cells and normal human melanocytes.
    Bellei B; Flori E; Izzo E; Maresca V; Picardo M
    Cell Signal; 2008 Oct; 20(10):1750-61. PubMed ID: 18602000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of NAT10 Suppresses Melanogenesis and Melanoma Growth by Attenuating Microphthalmia-Associated Transcription Factor (MITF) Expression.
    Oh TI; Lee YM; Lim BO; Lim JH
    Int J Mol Sci; 2017 Sep; 18(9):. PubMed ID: 28880216
    [No Abstract]   [Full Text] [Related]  

  • 15. Cilostazol promotes production of melanin by activating the microphthalmia-associated transcription factor (MITF).
    Wei B; Zhang YP; Yan HZ; Xu Y; Du TM
    Biochem Biophys Res Commun; 2014 Jan; 443(2):617-21. PubMed ID: 24333333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sesamol decreases melanin biosynthesis in melanocyte cells and zebrafish: Possible involvement of MITF via the intracellular cAMP and p38/JNK signalling pathways.
    Baek SH; Lee SH
    Exp Dermatol; 2015 Oct; 24(10):761-6. PubMed ID: 26010596
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide OA-VI12 restrains melanogenesis in B16 cells and C57B/6 mouse ear skin via the miR-122-5p/Mitf/Tyr axis.
    Wang J; Li Y; Feng C; Wang H; Li J; Liu N; Fu Z; Wang Y; Wu Y; Liu Y; Zhang Y; Yin S; He L; Wang Y; Yang X
    Amino Acids; 2023 Nov; 55(11):1687-1699. PubMed ID: 37794194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anti-Melanogenic Activities of Heracleum moellendorffii via ERK1/2-Mediated MITF Downregulation.
    Alam MB; Seo BJ; Zhao P; Lee SH
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27827938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manassantin A inhibits cAMP-induced melanin production by down-regulating the gene expressions of MITF and tyrosinase in melanocytes.
    Lee HD; Lee WH; Roh E; Seo CS; Son JK; Lee SH; Hwang BY; Jung SH; Han SB; Kim Y
    Exp Dermatol; 2011 Sep; 20(9):761-3. PubMed ID: 21569106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An inhibitory mechanism of action of a novel syringic-acid derivative on α-melanocyte-stimulating hormone (α-MSH)-induced melanogenesis.
    Jeong YJ; Lee JY; Park J; Park SN
    Life Sci; 2017 Dec; 191():52-58. PubMed ID: 28993145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.