BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29359653)

  • 1. Withdrawn: Impact of inhibitors on commercial cellulases in lignocellulosic ethanol production.
    Protein Pept Lett; 2018 Jan; ():. PubMed ID: 29359653
    [No Abstract]   [Full Text] [Related]  

  • 2. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass.
    Matano Y; Hasunuma T; Kondo A
    Bioresour Technol; 2012 Mar; 108():128-33. PubMed ID: 22265982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production, Optimization, and Characterization of Organic Solvent Tolerant Cellulases from a Lignocellulosic Waste-Degrading Actinobacterium, Promicromonospora sp. VP111.
    Thomas L; Ram H; Kumar A; Singh VP
    Appl Biochem Biotechnol; 2016 Jul; 179(5):863-79. PubMed ID: 26956574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulase production by Aspergillus niger using urban lignocellulosic waste as substrate: Evaluation of different cultivation strategies.
    Santos GB; de Sousa Francisco Filho Á; Rêgo da Silva Rodrigues J; Rodrigues de Souza R
    J Environ Manage; 2022 Mar; 305():114431. PubMed ID: 34995940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The realm of cellulases in biorefinery development.
    Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S
    Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.
    Lee CR; Sung BH; Lim KM; Kim MJ; Sohn MJ; Bae JH; Sohn JH
    Sci Rep; 2017 Jun; 7(1):4428. PubMed ID: 28667330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and characterization of cellulases and hemicellulases by Acremonium cellulolyticus using rice straw subjected to various pretreatments as the carbon source.
    Hideno A; Inoue H; Tsukahara K; Yano S; Fang X; Endo T; Sawayama S
    Enzyme Microb Technol; 2011 Feb; 48(2):162-8. PubMed ID: 22112826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermophilic Bacillus coagulans requires less cellulases for simultaneous saccharification and fermentation of cellulose to products than mesophilic microbial biocatalysts.
    Ou MS; Mohammed N; Ingram LO; Shanmugam KT
    Appl Biochem Biotechnol; 2009 May; 155(1-3):379-85. PubMed ID: 19156365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the economic viability of cellulases recycling on bioethanol production from recycled paper sludge.
    Gomes DG; Serna-Loaiza S; Cardona CA; Gama M; Domingues L
    Bioresour Technol; 2018 Nov; 267():347-355. PubMed ID: 30029181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulases: Role in Lignocellulosic Biomass Utilization.
    Soni SK; Sharma A; Soni R
    Methods Mol Biol; 2018; 1796():3-23. PubMed ID: 29856042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermostable cellulases: Current status and perspectives.
    Patel AK; Singhania RR; Sim SJ; Pandey A
    Bioresour Technol; 2019 May; 279():385-392. PubMed ID: 30685132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial dynamics for lignocellulosic waste bioconversion and its importance with modern circular economy, challenges and future perspectives.
    Sarsaiya S; Jain A; Kumar Awasthi S; Duan Y; Kumar Awasthi M; Shi J
    Bioresour Technol; 2019 Nov; 291():121905. PubMed ID: 31387838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails.
    Contreras F; Pramanik S; Rozhkova AM; Zorov IN; Korotkova O; Sinitsyn AP; Schwaneberg U; Davari MD
    Int J Mol Sci; 2020 Feb; 21(5):. PubMed ID: 32111065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated Douglas-Firby novel and commercial fungal cellulases.
    Kurabi A; Berlin A; Gilkes N; Kilburn D; Bura R; Robinson J; Markov A; Skomarovsky A; Gusakov A; Okunev O; Sinitsyn A; Gregg D; Xie D; Saddler J
    Appl Biochem Biotechnol; 2005; 121-124():219-30. PubMed ID: 15917601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Ethanol Production from Ionic Liquid-Pretreated Lignocellulosic Biomass by Cellulase-Displaying Yeasts.
    Yamada R; Nakashima K; Asai-Nakashima N; Tokuhara W; Ishida N; Katahira S; Kamiya N; Ogino C; Kondo A
    Appl Biochem Biotechnol; 2017 May; 182(1):229-237. PubMed ID: 27844339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production.
    Wang M; Li Z; Fang X; Wang L; Qu Y
    Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of Different Substrates on Lignocellulosic Enzyme Expression, Enzyme Activity, Substrate Utilization and Biological Efficiency of Pleurotus Eryngii.
    Xie C; Yan L; Gong W; Zhu Z; Tan S; Chen D; Hu Z; Peng Y
    Cell Physiol Biochem; 2016; 39(4):1479-94. PubMed ID: 27607466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.
    Huang R; Guo H; Su R; Qi W; He Z
    Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2G ethanol from the whole sugarcane lignocellulosic biomass.
    Pereira SC; Maehara L; Machado CM; Farinas CS
    Biotechnol Biofuels; 2015; 8():44. PubMed ID: 25774217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioprospecting thermophiles for cellulase production: a review.
    Acharya S; Chaudhary A
    Braz J Microbiol; 2012 Jul; 43(3):844-56. PubMed ID: 24031898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.