These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 29359705)

  • 21. Magnetic fish-robot based on multi-motion control of a flexible magnetic actuator.
    Kim SH; Shin K; Hashi S; Ishiyama K
    Bioinspir Biomim; 2012 Sep; 7(3):036007. PubMed ID: 22550128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bio-inspired flexible joints with passive feathering for robotic fish pectoral fins.
    Behbahani SB; Tan X
    Bioinspir Biomim; 2016 May; 11(3):036009. PubMed ID: 27144946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotic device shows lack of momentum enhancement for gymnotiform swimmers.
    English I; Liu H; Curet OM
    Bioinspir Biomim; 2019 Jan; 14(2):024001. PubMed ID: 30562723
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fish-like three-dimensional swimming with an autonomous, multi-fin, and biomimetic robot.
    Berlinger F; Saadat M; Haj-Hariri H; Lauder GV; Nagpal R
    Bioinspir Biomim; 2021 Feb; 16(2):. PubMed ID: 33264757
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Actuation of a robotic fish caudal fin for low reaction torque.
    Yun D; Kim KS; Kim S; Kyung J; Lee S
    Rev Sci Instrum; 2011 Jul; 82(7):075114. PubMed ID: 21806234
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mechanical properties of a bio-inspired robotic knifefish with an undulatory propulsor.
    Curet OM; Patankar NA; Lauder GV; MacIver MA
    Bioinspir Biomim; 2011 Jun; 6(2):026004. PubMed ID: 21474864
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fin-fin interactions during locomotion in a simplified biomimetic fish model.
    Matthews DG; Lauder GV
    Bioinspir Biomim; 2021 Sep; 16(4):. PubMed ID: 34015781
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design and experimental evaluation of the novel undulatory propulsors for biomimetic underwater robots.
    Li Y; Chen L; Wang Y; Ren C
    Bioinspir Biomim; 2021 Jul; 16(5):. PubMed ID: 34198281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fish biorobotics: kinematics and hydrodynamics of self-propulsion.
    Lauder GV; Anderson EJ; Tangorra J; Madden PG
    J Exp Biol; 2007 Aug; 210(Pt 16):2767-80. PubMed ID: 17690224
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fish robotics: multi-fin propulsion and the coupling of fin phase, spacing, and compliance.
    Mignano AP; Kadapa S; Drago AC; Lauder GV; Kwatny HG; Tangorra JL
    Bioinspir Biomim; 2024 Jan; 19(2):. PubMed ID: 38211345
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Study of flexible fin and compliant joint stiffness on propulsive performance: theory and experiments.
    Kancharala AK; Philen MK
    Bioinspir Biomim; 2014 Sep; 9(3):036011. PubMed ID: 24737004
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On designing geometric motion planners to solve regulating and trajectory tracking problems for robotic locomotion systems.
    Asnafi A; Mahzoon M
    Bioinspir Biomim; 2011 Sep; 6(3):036005. PubMed ID: 21852716
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of biorobotic models of highly deformable fins for studying the mechanics and control of fin forces in fishes.
    Tangorra J; Phelan C; Esposito C; Lauder G
    Integr Comp Biol; 2011 Jul; 51(1):176-89. PubMed ID: 21653544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fish-inspired robots: design, sensing, actuation, and autonomy--a review of research.
    Raj A; Thakur A
    Bioinspir Biomim; 2016 Apr; 11(3):031001. PubMed ID: 27073001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Passive mechanical models of fish caudal fins: effects of shape and stiffness on self-propulsion.
    Feilich KL; Lauder GV
    Bioinspir Biomim; 2015 Apr; 10(3):036002. PubMed ID: 25879846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A bio-inspired robotic fish utilizes the snap-through buckling of its spine to generate accelerations of more than 20g.
    Currier TM; Lheron S; Modarres-Sadeghi Y
    Bioinspir Biomim; 2020 Aug; 15(5):055006. PubMed ID: 32503011
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A biorobotic model of the sunfish pectoral fin for investigations of fin sensorimotor control.
    Phelan C; Tangorra J; Lauder G; Hale M
    Bioinspir Biomim; 2010 Sep; 5(3):035003. PubMed ID: 20729572
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional morphology and hydrodynamics of backward swimming in bluegill sunfish, Lepomis macrochirus.
    Flammang BE; Lauder GV
    Zoology (Jena); 2016 Oct; 119(5):414-420. PubMed ID: 27291816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.