These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 29359732)
1. [The efficacy of the exoskeleton ExoAtlet to restore walking in patients with multiple sclerosis]. Kotov SV; Lijdvoy VY; Sekirin AB; Petrushanskaya KA; Pismennaya EV Zh Nevrol Psikhiatr Im S S Korsakova; 2017; 117(10. Vyp. 2):41-47. PubMed ID: 29359732 [TBL] [Abstract][Full Text] [Related]
2. [Robotic mechanotherapy in patients with multiple sclerosis with impaired walking function]. Gevorkyan AA; Kotov SV; Lizhdvoy VY Zh Nevrol Psikhiatr Im S S Korsakova; 2020; 120(7):29-34. PubMed ID: 32790973 [TBL] [Abstract][Full Text] [Related]
3. [Robotic recovery of walking function in patients in the early recovery period of stroke]. Kotov SV; Isakova EV; Lijdvoy VY; Petrushanskaya KA; Pismennaya EV; Romanova MV; Kodzokova LH Zh Nevrol Psikhiatr Im S S Korsakova; 2020; 120(8. Vyp. 2):73-80. PubMed ID: 33016680 [TBL] [Abstract][Full Text] [Related]
4. Feasibility and Safety of a Powered Exoskeleton for Assisted Walking for Persons With Multiple Sclerosis: A Single-Group Preliminary Study. Kozlowski AJ; Fabian M; Lad D; Delgado AD Arch Phys Med Rehabil; 2017 Jul; 98(7):1300-1307. PubMed ID: 28315666 [TBL] [Abstract][Full Text] [Related]
5. A pilot randomized controlled trial of robotic exoskeleton-assisted exercise rehabilitation in multiple sclerosis. Androwis GJ; Sandroff BM; Niewrzol P; Fakhoury F; Wylie GR; Yue G; DeLuca J Mult Scler Relat Disord; 2021 Jun; 51():102936. PubMed ID: 33878619 [TBL] [Abstract][Full Text] [Related]
6. Robot-assisted gait training in multiple sclerosis patients: a randomized trial. Schwartz I; Sajin A; Moreh E; Fisher I; Neeb M; Forest A; Vaknin-Dembinsky A; Karusis D; Meiner Z Mult Scler; 2012 Jun; 18(6):881-90. PubMed ID: 22146609 [TBL] [Abstract][Full Text] [Related]
7. The effectiveness of Robot-Assisted Gait Training versus conventional therapy on mobility in severely disabled progressIve MultiplE sclerosis patients (RAGTIME): study protocol for a randomized controlled trial. Straudi S; Manfredini F; Lamberti N; Zamboni P; Bernardi F; Marchetti G; Pinton P; Bonora M; Secchiero P; Tisato V; Volpato S; Basaglia N Trials; 2017 Feb; 18(1):88. PubMed ID: 28241776 [TBL] [Abstract][Full Text] [Related]
8. Short-term impact of fampridine on motor and cognitive functions, mood and quality of life among multiple sclerosis patients. Pavsic K; Pelicon K; Ledinek AH; Sega S Clin Neurol Neurosurg; 2015 Dec; 139():35-40. PubMed ID: 26363365 [TBL] [Abstract][Full Text] [Related]
9. Mitoxantrone: a review of its use in multiple sclerosis. Scott LJ; Figgitt DP CNS Drugs; 2004; 18(6):379-96. PubMed ID: 15089110 [TBL] [Abstract][Full Text] [Related]
10. Improving gait in multiple sclerosis using robot-assisted, body weight supported treadmill training. Lo AC; Triche EW Neurorehabil Neural Repair; 2008; 22(6):661-71. PubMed ID: 18971381 [TBL] [Abstract][Full Text] [Related]
11. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Evans N; Hartigan C; Kandilakis C; Pharo E; Clesson I Top Spinal Cord Inj Rehabil; 2015; 21(2):122-32. PubMed ID: 26364281 [TBL] [Abstract][Full Text] [Related]
12. Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. Block VJ; Lizée A; Crabtree-Hartman E; Bevan CJ; Graves JS; Bove R; Green AJ; Nourbakhsh B; Tremblay M; Gourraud PA; Ng MY; Pletcher MJ; Olgin JE; Marcus GM; Allen DD; Cree BA; Gelfand JM J Neurol; 2017 Feb; 264(2):316-326. PubMed ID: 27896433 [TBL] [Abstract][Full Text] [Related]
13. Walking capacity and ability are more impaired in progressive compared to relapsing type of multiple sclerosis. Feys P; Bibby BM; Baert I; Dalgas U Eur J Phys Rehabil Med; 2015 Apr; 51(2):207-10. PubMed ID: 25180640 [TBL] [Abstract][Full Text] [Related]
15. Monitoring Contact Behavior During Assisted Walking With a Lower Limb Exoskeleton. Wan X; Liu Y; Akiyama Y; Yamada Y IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):869-877. PubMed ID: 32167901 [TBL] [Abstract][Full Text] [Related]
16. A prospective open-label study of endovascular treatment of chronic cerebrospinal venous insufficiency. Zamboni P; Galeotti R; Menegatti E; Malagoni AM; Gianesini S; Bartolomei I; Mascoli F; Salvi F J Vasc Surg; 2009 Dec; 50(6):1348-58.e1-3. PubMed ID: 19958985 [TBL] [Abstract][Full Text] [Related]
17. [Information processing speed and influential factors in multiple sclerosis]. Zhang ML; Xu EH; Dong HQ; Zhang JW Zhonghua Yi Xue Za Zhi; 2016 Apr; 96(15):1173-7. PubMed ID: 27117362 [TBL] [Abstract][Full Text] [Related]
18. Cervical cord area is associated with infratentorial grey and white matter volume predominantly in relapsing-remitting multiple sclerosis: A study using semi-automated cord volumetry and voxel-based morphometry. Bellenberg B; Schneider R; Weiler F; Suchan B; Haghikia A; Hoffjan S; Gold R; Köster O; Lukas C Mult Scler Relat Disord; 2015 May; 4(3):264-72. PubMed ID: 26008944 [TBL] [Abstract][Full Text] [Related]
19. Voluntary driven exoskeleton as a new tool for rehabilitation in chronic spinal cord injury: a pilot study. Aach M; Cruciger O; Sczesny-Kaiser M; Höffken O; Meindl RCh; Tegenthoff M; Schwenkreis P; Sankai Y; Schildhauer TA Spine J; 2014 Dec; 14(12):2847-53. PubMed ID: 24704677 [TBL] [Abstract][Full Text] [Related]
20. Enhancing quality of life in progressive multiple sclerosis with powered robotic exoskeleton. Wee SK; Ho CY; Tan SL; Ong CH Mult Scler; 2021 Mar; 27(3):483-487. PubMed ID: 32931376 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]