These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29359914)

  • 21. Kirigami-Design-Enabled Hydrogel Multimorphs with Application as a Multistate Switch.
    Hao XP; Xu Z; Li CY; Hong W; Zheng Q; Wu ZL
    Adv Mater; 2020 Jun; 32(22):e2000781. PubMed ID: 32319155
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adhesion Circle: A New Approach To Better Characterize Directional Gecko-Inspired Dry Adhesives.
    Wang Y; Lehmann S; Shao J; Sameoto D
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3060-3067. PubMed ID: 28038311
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Grasping with kirigami shells.
    Yang Y; Vella K; Holmes DP
    Sci Robot; 2021 May; 6(54):. PubMed ID: 34043535
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accelerated Search and Design of Stretchable Graphene Kirigami Using Machine Learning.
    Hanakata PZ; Cubuk ED; Campbell DK; Park HS
    Phys Rev Lett; 2018 Dec; 121(25):255304. PubMed ID: 30608812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pop-Up Conducting Large-Area Biographene Kirigami.
    Ma R; Wu C; Wang ZL; Tsukruk VV
    ACS Nano; 2018 Oct; 12(10):9714-9720. PubMed ID: 30153407
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a Variable Stiffness Gecko-Inspired Foot and Adhesion Performance Test on Flexible Surface.
    Yu Z; Fu J; Ji Y; Zhao B; Ji A
    Biomimetics (Basel); 2022 Sep; 7(3):. PubMed ID: 36134929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Soft Robots' Dynamic Posture Perception Using Kirigami-Inspired Flexible Sensors with Porous Structures and Long Short-Term Memory (LSTM) Neural Networks.
    Shu J; Wang J; Lau SCY; Su Y; Heung KHL; Shi X; Li Z; Tong RK
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298057
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Suspended Kirigami Surfaces for Multifoulant Adhesion Reduction.
    Azimi Dijvejin Z; Khatir B; Golovin K
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):6221-6229. PubMed ID: 35061366
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electromagnetic Control by Actuating Kirigami-Inspired Shape Memory Alloy: Thermally Reconfigurable Antenna application.
    Lee M; Lee S; Lim S
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925833
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kirigami Nanocomposites as Wide-Angle Diffraction Gratings.
    Xu L; Wang X; Kim Y; Shyu TC; Lyu J; Kotov NA
    ACS Nano; 2016 Jun; 10(6):6156-62. PubMed ID: 27152860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Kirigami-Inspired Flexible Lithium-Ion Batteries via Transformation of Concentrated Stress into Segmented Strain.
    Meng Q; Zhu J; Kang C; Xiao X; Ma Y; Huo H; Zuo P; Du C; Lou S; Yin G
    Small; 2022 Nov; 18(45):e2204745. PubMed ID: 36148862
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes.
    Zhang Y; Yan Z; Nan K; Xiao D; Liu Y; Luan H; Fu H; Wang X; Yang Q; Wang J; Ren W; Si H; Liu F; Yang L; Li H; Wang J; Guo X; Luo H; Wang L; Huang Y; Rogers JA
    Proc Natl Acad Sci U S A; 2015 Sep; 112(38):11757-64. PubMed ID: 26372959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shape morphing Kirigami mechanical metamaterials.
    Neville RM; Scarpa F; Pirrera A
    Sci Rep; 2016 Aug; 6():31067. PubMed ID: 27491945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design of Rigidity and Breaking Strain for a Kirigami Structure with Non-Uniform Deformed Regions.
    Taniyama H; Iwase E
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31207899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of a Kirigami Structure with a Large Uniform Deformation Region.
    Taniyama H; Iwase E
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33445722
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Rigidly flat-foldable class of lockable origami-inspired metamaterials with topological stiff states.
    Jamalimehr A; Mirzajanzadeh M; Akbarzadeh A; Pasini D
    Nat Commun; 2022 Apr; 13(1):1816. PubMed ID: 35383167
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon nanotubes kirigami mechanical metamaterials.
    Zhao Y; Wang C; Wu J; Sui C; Zhao S; Zhang Z; He X
    Phys Chem Chem Phys; 2017 May; 19(18):11032-11042. PubMed ID: 28352879
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kirigami-Inspired Deformable 3D Structures Conformable to Curved Biological Surface.
    Yang C; Zhang H; Liu Y; Yu Z; Wei X; Hu Y
    Adv Sci (Weinh); 2018 Dec; 5(12):1801070. PubMed ID: 30581706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication and Deformation of 3D Multilayered Kirigami Microstructures.
    Humood M; Shi Y; Han M; Lefebvre J; Yan Z; Pharr M; Zhang Y; Huang Y; Rogers JA; Polycarpou AA
    Small; 2018 Mar; 14(11):e1703852. PubMed ID: 29377490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Programmable active kirigami metasheets with more freedom of actuation.
    Tang Y; Li Y; Hong Y; Yang S; Yin J
    Proc Natl Acad Sci U S A; 2019 Dec; 116(52):26407-26413. PubMed ID: 31843912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.