These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 29359924)

  • 1. Diffusion of Water through the Dual-Porosity Swelling Clay Mineral Vermiculite.
    Tertre E; Savoye S; Hubert F; Prêt D; Dabat T; Ferrage E
    Environ Sci Technol; 2018 Feb; 52(4):1899-1907. PubMed ID: 29359924
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of salinity gradients on the diffusion of water and ionic species in dual porosity clay samples.
    Tertre E; Dabat T; Wang J; Savoye S; Hubert F; Dazas B; Tournassat C; Steefel CI; Ferrage E
    J Contam Hydrol; 2024 May; 264():104357. PubMed ID: 38729027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thallium adsorption onto phyllosilicate minerals.
    Voegelin A; Wick S; Pfenninger N; Mangold S; Baeyens B; Fernandes MM
    Environ Sci Process Impacts; 2022 Sep; 24(9):1343-1359. PubMed ID: 35608286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying the impact of immobile water regions on the fate of nitroaromatic compounds in dual-porosity media.
    Knorr B; Maloszewski P; Stumpp C
    J Contam Hydrol; 2016 Aug; 191():44-53. PubMed ID: 27236346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cs selectivity and adsorption reversibility on Ca-illite and Ca-vermiculite.
    Latrille C; Bildstein O
    Chemosphere; 2022 Feb; 288(Pt 2):132582. PubMed ID: 34687680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Mechanism of tritium persistence in porous media like clay minerals].
    Wu DJ; Wang JS; Teng YG; Zhang KN
    Huan Jing Ke Xue; 2011 Mar; 32(3):742-8. PubMed ID: 21634173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of organic anions in clay-rich media: Retardation and effect of anion exclusion.
    Dagnelie RVH; Rasamimanana S; Blin V; Radwan J; Thory E; Robinet JC; Lefèvre G
    Chemosphere; 2018 Dec; 213():472-480. PubMed ID: 30245224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Clay-mineral suites, sources, and inferred dispersal routes: Southern California continental shelf.
    Hein JR; Dowling JS; Schuetze A; Lee HJ
    Mar Environ Res; 2003; 56(1-2):79-102. PubMed ID: 12648951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterizing the capacity of hyporheic sediments to attenuate groundwater nitrate loads by adsorption.
    Meghdadi A
    Water Res; 2018 Sep; 140():364-376. PubMed ID: 29751318
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study.
    González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW
    J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of clay minerals on the transport of nanoplastics through water-saturated porous media.
    Lu T; Gilfedder BS; Peng H; Niu G; Frei S
    Sci Total Environ; 2021 Nov; 796():148982. PubMed ID: 34273837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of confining pressure on diffusion coefficients in clay-rich, low-permeability sedimentary rocks.
    Xiang Y; Al T; Mazurek M
    J Contam Hydrol; 2016 Dec; 195():1-10. PubMed ID: 27838596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soft X-ray spectromicroscopy study of mineral-organic matter associations in pasture soil clay fractions.
    Chen C; Dynes JJ; Wang J; Karunakaran C; Sparks DL
    Environ Sci Technol; 2014 Jun; 48(12):6678-86. PubMed ID: 24837340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supercritical CO
    Hwang J; Pini R
    Environ Sci Technol; 2019 Oct; 53(19):11588-11596. PubMed ID: 31478655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of the interaction between cesium ion and some clay minerals based on their structural features.
    Akemoto Y; Sakti SCW; Kan M; Tanaka S
    Environ Sci Pollut Res Int; 2021 Mar; 28(11):14121-14130. PubMed ID: 33210248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the firing behaviour of an illite-kaolinite clay mineral and its potential use as membrane support.
    Elgamouz A; Tijani N; Shehadi I; Hasan K; Al-Farooq Kawam M
    Heliyon; 2019 Aug; 5(8):e02281. PubMed ID: 31508517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro biological effects of clay minerals advised as substitutes for asbestos.
    Governa M; Valentino M; Visonà I; Monaco F; Amati M; Scancarello G; Scansetti G
    Cell Biol Toxicol; 1995 Oct; 11(5):237-49. PubMed ID: 8608405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between sediment clay minerals and total mercury.
    Kongchum M; Hudnall WH; DeLaune RD
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(5):534-9. PubMed ID: 21469014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Swelling Phenomena of the Nonswelling Clay Induced by CO
    Pang J; Liang Y; Masuda Y; Matsuoka T; Zhang Y; Xue Z
    Environ Sci Technol; 2020 May; 54(9):5767-5773. PubMed ID: 32271553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cyclodextrins on surface and pore properties of soil clay minerals.
    Jozefaciuk G; Muranyi A; Fenyvesi E
    Environ Sci Technol; 2001 Dec; 35(24):4947-52. PubMed ID: 11775177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.