These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29360269)
1. Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering. Türkkan S; Atila D; Akdağ A; Tezcaner A J Biomed Mater Res B Appl Biomater; 2018 Oct; 106(7):2625-2635. PubMed ID: 29360269 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Park YR; Ju HW; Lee JM; Kim DK; Lee OJ; Moon BM; Park HJ; Jeong JY; Yeon YK; Park CH Int J Biol Macromol; 2016 Dec; 93(Pt B):1567-1574. PubMed ID: 27431792 [TBL] [Abstract][Full Text] [Related]
3. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
5. Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Ribeiro VP; da Silva Morais A; Maia FR; Canadas RF; Costa JB; Oliveira AL; Oliveira JM; Reis RL Acta Biomater; 2018 May; 72():167-181. PubMed ID: 29626700 [TBL] [Abstract][Full Text] [Related]
6. Tissue engineering of human knee meniscus using functionalized and reinforced silk-polyvinyl alcohol composite three-dimensional scaffolds: Understanding the in vitro and in vivo behavior. Pillai MM; Gopinathan J; Senthil Kumar R; Sathish Kumar G; Shanthakumari S; Sahanand KS; Bhattacharyya A; Selvakumar R J Biomed Mater Res A; 2018 Jun; 106(6):1722-1731. PubMed ID: 29460414 [TBL] [Abstract][Full Text] [Related]
7. Development of artificial dermis using 3D electrospun silk fibroin nanofiber matrix. Lee OJ; Ju HW; Kim JH; Lee JM; Ki CS; Kim JH; Moon BM; Park HJ; Sheikh FA; Park CH J Biomed Nanotechnol; 2014 Jul; 10(7):1294-303. PubMed ID: 24804550 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and fabrication of novel quinone-based chromenopyrazole antioxidant-laden silk fibroin nanofibers scaffold for tissue engineering applications. Kandhasamy S; Arthi N; Arun RP; Verma RS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():773-787. PubMed ID: 31147050 [TBL] [Abstract][Full Text] [Related]
9. Silk fibroin scaffolds with inverse opal structure for bone tissue engineering. Sommer MR; Vetsch JR; Leemann J; Müller R; Studart AR; Hofmann S J Biomed Mater Res B Appl Biomater; 2017 Oct; 105(7):2074-2084. PubMed ID: 27407014 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of highly interconnected porous silk fibroin scaffolds for potential use as vascular grafts. Zhu M; Wang K; Mei J; Li C; Zhang J; Zheng W; An D; Xiao N; Zhao Q; Kong D; Wang L Acta Biomater; 2014 May; 10(5):2014-23. PubMed ID: 24486642 [TBL] [Abstract][Full Text] [Related]
11. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
12. Modified porous scaffolds of silk fibroin with mimicked microenvironment based on decellularized pulp/fibronectin for designed performance biomaterials in maxillofacial bone defect. Sangkert S; Kamonmattayakul S; Chai WL; Meesane J J Biomed Mater Res A; 2017 Jun; 105(6):1624-1636. PubMed ID: 28000362 [TBL] [Abstract][Full Text] [Related]
13. Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applications. Yan LP; Oliveira JM; Oliveira AL; Caridade SG; Mano JF; Reis RL Acta Biomater; 2012 Jan; 8(1):289-301. PubMed ID: 22019518 [TBL] [Abstract][Full Text] [Related]
14. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Wang Y; Bella E; Lee CS; Migliaresi C; Pelcastre L; Schwartz Z; Boyan BD; Motta A Biomaterials; 2010 Jun; 31(17):4672-81. PubMed ID: 20303584 [TBL] [Abstract][Full Text] [Related]
15. Freeze-gelled silk fibroin protein scaffolds for potential applications in soft tissue engineering. Bhardwaj N; Chakraborty S; Kundu SC Int J Biol Macromol; 2011 Oct; 49(3):260-7. PubMed ID: 21557966 [TBL] [Abstract][Full Text] [Related]
16. Silk fibroin-keratin based 3D scaffolds as a dermal substitute for skin tissue engineering. Bhardwaj N; Sow WT; Devi D; Ng KW; Mandal BB; Cho NJ Integr Biol (Camb); 2015 Jan; 7(1):53-63. PubMed ID: 25372050 [TBL] [Abstract][Full Text] [Related]
17. Fabrication of poly(lactic-co-glycolic acid) scaffolds containing silk fibroin scaffolds for tissue engineering applications. Ju HW; Sheikh FA; Moon BM; Park HJ; Lee OJ; Kim JH; Eun JJ; Khang G; Park CH J Biomed Mater Res A; 2014 Aug; 102(8):2713-24. PubMed ID: 24026912 [TBL] [Abstract][Full Text] [Related]
18. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
19. Preparation and in vitro characterization of biomorphic silk fibroin scaffolds for bone tissue engineering. Qian J; Suo A; Jin X; Xu W; Xu M J Biomed Mater Res A; 2014 Sep; 102(9):2961-71. PubMed ID: 24123779 [TBL] [Abstract][Full Text] [Related]
20. Tailoring degradation rates of silk fibroin scaffolds for tissue engineering. Zhang L; Liu X; Li G; Wang P; Yang Y J Biomed Mater Res A; 2019 Jan; 107(1):104-113. PubMed ID: 30367546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]