These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 29360398)
1. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F. Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398 [TBL] [Abstract][Full Text] [Related]
2. Combined high pressure and thermal processing on inactivation of type E and nonproteolytic type B and F spores of Clostridium botulinum. Skinner GE; Marshall KM; Morrissey TR; Loeza V; Patazca E; Reddy NR; Larkin JW J Food Prot; 2014 Dec; 77(12):2054-61. PubMed ID: 25474050 [TBL] [Abstract][Full Text] [Related]
3. Thermal and Pressure-Assisted Thermal Destruction Kinetics for Spores of Type A Clostridium botulinum and Clostridium sporogenes PA3679. Reddy NR; Patazca E; Morrissey TR; Skinner GE; Loeza V; Schill KM; Larkin JW J Food Prot; 2016 Feb; 79(2):253-62. PubMed ID: 26818986 [TBL] [Abstract][Full Text] [Related]
4. Combined high pressure and thermal processing on inactivation of type A and proteolytic type B spores of Clostridium botulinum. Reddy NR; Marshall KM; Morrissey TR; Loeza V; Patazca E; Skinner GE; Krishnamurthy K; Larkin JW J Food Prot; 2013 Aug; 76(8):1384-92. PubMed ID: 23905794 [TBL] [Abstract][Full Text] [Related]
5. Role of Dipicolinic Acid in Heat Resistance of Spores of Clostridium botulinum and Clostridium sporogenes PA3679 by Thermal and Pressure-assisted Thermal Processing. Rolfe CA; Morrissey TR; Redan BW; Aguilar VL; Skinner GE; Reddy NR J Food Prot; 2024 Oct; 87(10):100359. PubMed ID: 39260571 [TBL] [Abstract][Full Text] [Related]
6. Evidence for Bacillus cereus Spores as the Target Pathogen in Thermally Processed Extended Shelf Life Refrigerated Foods. Reddy NR; Morrissey TR; Aguilar VL; Schill KM; Skinner GE J Food Prot; 2021 Mar; 84(3):442-448. PubMed ID: 33125074 [TBL] [Abstract][Full Text] [Related]
7. Effect of sporulation temperature on the resistance of Clostridium botulinum type A spores to thermal and high pressure processing. Marshall KM; Nowaczyk L; Morrissey TR; Loeza V; Halik LA; Skinner GE; Reddy NR; Fleischman GJ; Larkin JW J Food Prot; 2015 Jan; 78(1):146-50. PubMed ID: 25581189 [TBL] [Abstract][Full Text] [Related]
8. Effect of packaging systems and pressure fluids on inactivation of Clostridium botulinum spores by combined high pressure and thermal processing. Patazca E; Morrissey TR; Loeza V; Reddy NR; Skinner GE; Larkin JW J Food Prot; 2013 Mar; 76(3):448-55. PubMed ID: 23462082 [TBL] [Abstract][Full Text] [Related]
9. Effect of media, additives, and incubation conditions on the recovery of high pressure and heat-injured Clostridium botulinum spores. Reddy NR; Tetzloff RC; Skinner GE Food Microbiol; 2010 Aug; 27(5):613-7. PubMed ID: 20510779 [TBL] [Abstract][Full Text] [Related]
10. A predictive model that describes the effect of prolonged heating at 70 to 90 degrees C and subsequent incubation at refrigeration temperatures on growth from spores and toxigenesis by nonproteolytic Clostridium botulinum in the presence of lysozyme. Fernández PS; Peck MW Appl Environ Microbiol; 1999 Aug; 65(8):3449-57. PubMed ID: 10427033 [TBL] [Abstract][Full Text] [Related]
11. Effect of heat treatment on survival of, and growth from, spores of nonproteolytic Clostridium botulinum at refrigeration temperatures. Peck MW; Lund BM; Fairbairn DA; Kaspersson AS; Undeland PC Appl Environ Microbiol; 1995 May; 61(5):1780-5. PubMed ID: 7646016 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of growth of nonproteolytic Clostridium botulinum type B in sous vide cooked meat products is achieved by using thermal processing but not nisin. Lindström M; Mokkila M; Skyttä E; Hyytiä-Trees E; Lähteenmäki L; Hielm S; Ahvenainen R; Korkeala H J Food Prot; 2001 Jun; 64(6):838-44. PubMed ID: 11403135 [TBL] [Abstract][Full Text] [Related]
13. Thermal inactivation of nonproteolytic Clostridium botulinum type E spores in model fish media and in vacuum-packaged hot-smoked fish products. Lindström M; Nevas M; Hielm S; Lähteenmäki L; Peck MW; Korkeala H Appl Environ Microbiol; 2003 Jul; 69(7):4029-36. PubMed ID: 12839778 [TBL] [Abstract][Full Text] [Related]
14. Inactivation of Clostridium botulinum type A spores by high-pressure processing at elevated temperatures. Reddy NR; Solomon HM; Tetzloff RC; Rhodehamel EJ J Food Prot; 2003 Aug; 66(8):1402-7. PubMed ID: 12929826 [TBL] [Abstract][Full Text] [Related]
15. Inactivation of non-proteolytic Clostridium botulinum type E in low-acid foods and phosphate buffer by heat and pressure. Maier MB; Schweiger T; Lenz CA; Vogel RF PLoS One; 2018; 13(7):e0200102. PubMed ID: 29969482 [TBL] [Abstract][Full Text] [Related]
17. Thermal Resistance of Nonproteolytic Type B and Type E Clostridium botulinum Spores in Phosphate Buffer and Turkey Slurry Juneja VK; Eblen BS; Marmer BS; Williams AC; Palumbo SA; Miller AJ J Food Prot; 1995 Jul; 58(7):758-763. PubMed ID: 31137328 [TBL] [Abstract][Full Text] [Related]
18. Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. Margosch D; Ehrmann MA; Gänzle MG; Vogel RF J Food Prot; 2004 Nov; 67(11):2530-7. PubMed ID: 15553637 [TBL] [Abstract][Full Text] [Related]
19. Non-linear pressure/temperature-dependence of high pressure thermal inactivation of proteolytic Clostridium botulinum type B in foods. Maier MB; Lenz CA; Vogel RF PLoS One; 2017; 12(10):e0187023. PubMed ID: 29073204 [TBL] [Abstract][Full Text] [Related]
20. Effect of lysozyme concentration, heating at 90 degrees C, and then incubation at chilled temperatures on growth from spores of non-proteolytic Clostridium botulinum. Peck MW; Fernandez PS Lett Appl Microbiol; 1995 Jul; 21(1):50-4. PubMed ID: 7662337 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]