These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 29360976)

  • 1. Transcriptional regulation of the mannan utilization genes in the alkaliphilic Bacillus sp. N16-5.
    Song Y; Liu D; Liu M; Yang H; Fan Y; Sun W; Xue Y; Zhang T; Ma Y
    FEMS Microbiol Lett; 2018 Feb; 365(4):. PubMed ID: 29360976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Manno-Oligosaccharide Binding Protein Identified in Alkaliphilic Bacillus sp. N16-5 Is Involved in Mannan Utilization.
    Song Y; Li J; Meng S; Yin L; Xue Y; Ma Y
    PLoS One; 2016; 11(3):e0150059. PubMed ID: 26978267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Galactomannan Degrading Enzymes from the Mannan Utilization Gene Cluster of Alkaliphilic Bacillus sp. N16-5 and Their Synergy on Galactomannan Degradation.
    Song Y; Sun W; Fan Y; Xue Y; Liu D; Ma C; Liu W; Mosher W; Luo X; Li Z; Ma W; Zhang T
    J Agric Food Chem; 2018 Oct; 66(42):11055-11063. PubMed ID: 30351049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Characterization of solute-binding protein XynE of the xylooligosaccharide transporter from Bacillus sp. N16-5].
    Zhang Z; Song Y; Jiang K; Xue Y; Ma Y
    Wei Sheng Wu Xue Bao; 2015 Jan; 55(1):40-9. PubMed ID: 25958681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ManR, a transcriptional regulator of the β-mannan utilization system, controls the cellulose utilization system in Aspergillus oryzae.
    Ogawa M; Kobayashi T; Koyama Y
    Biosci Biotechnol Biochem; 2013; 77(2):426-9. PubMed ID: 23391935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.
    Song Y; Xue Y; Ma Y
    PLoS One; 2013; 8(1):e54090. PubMed ID: 23326578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ManR, a novel Zn(II)2Cys6 transcriptional activator, controls the β-mannan utilization system in Aspergillus oryzae.
    Ogawa M; Kobayashi T; Koyama Y
    Fungal Genet Biol; 2012 Dec; 49(12):987-95. PubMed ID: 23063954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and biochemical basis for mannan utilization by Caldanaerobius polysaccharolyticus strain ATCC BAA-17.
    Chekan JR; Kwon IH; Agarwal V; Dodd D; Revindran V; Mackie RI; Cann I; Nair SK
    J Biol Chem; 2014 Dec; 289(50):34965-77. PubMed ID: 25342756
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global Microarray Analysis of Alkaliphilic Halotolerant Bacterium Bacillus sp. N16-5 Salt Stress Adaptation.
    Yin L; Xue Y; Ma Y
    PLoS One; 2015; 10(6):e0128649. PubMed ID: 26030352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Bacillus subtilis mannose regulator, ManR, a DNA-binding protein regulated by HPr and its cognate PTS transporter ManP.
    Wenzel M; Altenbuchner J
    Mol Microbiol; 2013 May; 88(3):562-76. PubMed ID: 23551403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray-induced mutation of Bacillus sp. MR10 for manno-oligosaccharides production from copra meal.
    Chaikaew S; Kanpiengjai A; Intatep J; Unban K; Wongputtisin P; Takata G; Khanongnuch C
    Prep Biochem Biotechnol; 2017 Apr; 47(4):424-433. PubMed ID: 27819518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The GH5 1,4-β-mannanase from Bifidobacterium animalis subsp. lactis Bl-04 possesses a low-affinity mannan-binding module and highlights the diversity of mannanolytic enzymes.
    Morrill J; Kulcinskaja E; Sulewska AM; Lahtinen S; Stålbrand H; Svensson B; Abou Hachem M
    BMC Biochem; 2015 Nov; 16():26. PubMed ID: 26558435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MalR type regulator AcrC is a transcriptional repressor of acarbose biosynthetic genes in Actinoplanes sp. SE50/110.
    Wolf T; Droste J; Gren T; Ortseifen V; Schneiker-Bekel S; Zemke T; Pühler A; Kalinowski J
    BMC Genomics; 2017 Jul; 18(1):562. PubMed ID: 28743243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glucomannan utilization operon of Bacillus subtilis.
    Sadaie Y; Nakadate H; Fukui R; Yee LM; Asai K
    FEMS Microbiol Lett; 2008 Feb; 279(1):103-9. PubMed ID: 18177310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two binding proteins of the ABC transporter that confers growth of Bifidobacterium animalis subsp. lactis ATCC27673 on β-mannan possess distinct manno-oligosaccharide-binding profiles.
    Ejby M; Guskov A; Pichler MJ; Zanten GC; Schoof E; Saburi W; Slotboom DJ; Abou Hachem M
    Mol Microbiol; 2019 Jul; 112(1):114-130. PubMed ID: 30947380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elicitation effects of oligosaccharides on the transcriptional level of bacitracin ABC transporter genes in Bacillus licheniformis.
    Murphy T; Roy I; Harrop A; Dixon K; Keshavarz T
    Biotechnol Lett; 2008 Sep; 30(9):1665-70. PubMed ID: 18481184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directed Evolution and Structural Analysis of Alkaline Pectate Lyase from the Alkaliphilic Bacterium Bacillus sp. Strain N16-5 To Improve Its Thermostability for Efficient Ramie Degumming.
    Zhou C; Ye J; Xue Y; Ma Y
    Appl Environ Microbiol; 2015 Sep; 81(17):5714-23. PubMed ID: 26070675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 1,2-alpha-D-mannosidase from a Bacillus sp.: purification, characterization, and mode of action.
    Maruyama Y; Nakajima T; Ichishima E
    Carbohydr Res; 1994 Jan; 251():89-98. PubMed ID: 8149382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction with enzyme IIBMpo (EIIBMpo) and phosphorylation by phosphorylated EIIBMpo exert antagonistic effects on the transcriptional activator ManR of Listeria monocytogenes.
    Zébré AC; Aké FM; Ventroux M; Koffi-Nevry R; Noirot-Gros MF; Deutscher J; Milohanic E
    J Bacteriol; 2015 May; 197(9):1559-72. PubMed ID: 25691525
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
    Hogg D; Pell G; Dupree P; Goubet F; Martín-Orúe SM; Armand S; Gilbert HJ
    Biochem J; 2003 May; 371(Pt 3):1027-43. PubMed ID: 12523937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.