BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

504 related articles for article (PubMed ID: 29360996)

  • 1. Feature specific quantile normalization enables cross-platform classification of molecular subtypes using gene expression data.
    Franks JM; Cai G; Whitfield ML
    Bioinformatics; 2018 Jun; 34(11):1868-1874. PubMed ID: 29360996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feature-specific quantile normalization and feature-specific mean-variance normalization deliver robust bi-directional classification and feature selection performance between microarray and RNAseq data.
    Skubleny D; Ghosh S; Spratlin J; Schiller DE; Rayat GR
    BMC Bioinformatics; 2024 Mar; 25(1):136. PubMed ID: 38549046
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of RNA-Seq data with heterogeneous microarray data for breast cancer profiling.
    Castillo D; Gálvez JM; Herrera LJ; Román BS; Rojas F; Rojas I
    BMC Bioinformatics; 2017 Nov; 18(1):506. PubMed ID: 29157215
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Parallel comparison of Illumina RNA-Seq and Affymetrix microarray platforms on transcriptomic profiles generated from 5-aza-deoxy-cytidine treated HT-29 colon cancer cells and simulated datasets.
    Xu X; Zhang Y; Williams J; Antoniou E; McCombie WR; Wu S; Zhu W; Davidson NO; Denoya P; Li E
    BMC Bioinformatics; 2013; 14 Suppl 9(Suppl 9):S1. PubMed ID: 23902433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature selection and tumor classification for microarray data using relaxed Lasso and generalized multi-class support vector machine.
    Kang C; Huo Y; Xin L; Tian B; Yu B
    J Theor Biol; 2019 Feb; 463():77-91. PubMed ID: 30537483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PLIDA: cross-platform gene expression normalization using perturbed topic models.
    Deshwar AG; Morris Q
    Bioinformatics; 2014 Apr; 30(7):956-61. PubMed ID: 24123674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using microarray-based subtyping methods for breast cancer in the era of high-throughput RNA sequencing.
    Pedersen CB; Nielsen FC; Rossing M; Olsen LR
    Mol Oncol; 2018 Dec; 12(12):2136-2146. PubMed ID: 30289602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.
    Sundaramurthy G; Eghbalnia HR
    Comput Biol Med; 2015 Dec; 67():29-40. PubMed ID: 26492320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-platform normalization enables machine learning model training on microarray and RNA-seq data simultaneously.
    Foltz SM; Greene CS; Taroni JN
    Commun Biol; 2023 Feb; 6(1):222. PubMed ID: 36841852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. aRrayLasso: a network-based approach to microarray interconversion.
    Brown AS; Patel CJ
    Bioinformatics; 2015 Dec; 31(23):3859-61. PubMed ID: 26283699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pipeline for Integrated Microarray Expression Normalization Tool Kit (PIMENTo) for Tumor Microarray Profiling Experiments.
    Nash T; Huff M; Glen WB; Hardiman G
    Methods Mol Biol; 2019; 1908():153-168. PubMed ID: 30649727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MLSeq: Machine learning interface for RNA-sequencing data.
    Goksuluk D; Zararsiz G; Korkmaz S; Eldem V; Zararsiz GE; Ozcetin E; Ozturk A; Karaagaoglu AE
    Comput Methods Programs Biomed; 2019 Jul; 175():223-231. PubMed ID: 31104710
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative or qualitative transcriptional diagnostic signatures? A case study for colorectal cancer.
    Guan Q; Yan H; Chen Y; Zheng B; Cai H; He J; Song K; Guo Y; Ao L; Liu H; Zhao W; Wang X; Guo Z
    BMC Genomics; 2018 Jan; 19(1):99. PubMed ID: 29378509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discriminating early- and late-stage cancers using multiple kernel learning on gene sets.
    Rahimi A; Gönen M
    Bioinformatics; 2018 Jul; 34(13):i412-i421. PubMed ID: 29949993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of transcriptional subtypes in lung adenocarcinoma and squamous cell carcinoma through integrative analysis of microarray and RNA sequencing data.
    Fauteux F; Surendra A; McComb S; Pan Y; Hill JJ
    Sci Rep; 2021 Apr; 11(1):8709. PubMed ID: 33888829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue.
    Chen Z; Li J; Wei L
    Artif Intell Med; 2007 Oct; 41(2):161-75. PubMed ID: 17851055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Technical differences between sequencing and microarray platforms impact transcriptomic subtyping of colorectal cancer.
    Eilertsen IA; Moosavi SH; Strømme JM; Nesbakken A; Johannessen B; Lothe RA; Sveen A
    Cancer Lett; 2020 Jan; 469():246-255. PubMed ID: 31678167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. LONGO: an R package for interactive gene length dependent analysis for neuronal identity.
    McCoy MJ; Paul AJ; Victor MB; Richner M; Gabel HW; Gong H; Yoo AS; Ahn TH
    Bioinformatics; 2018 Jul; 34(13):i422-i428. PubMed ID: 29950021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DaMiRseq-an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification.
    Chiesa M; Colombo GI; Piacentini L
    Bioinformatics; 2018 Apr; 34(8):1416-1418. PubMed ID: 29236969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.