BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 29361141)

  • 1. Vacuolar Transporters for Cadmium and Arsenic in Plants and their Applications in Phytoremediation and Crop Development.
    Zhang J; Martinoia E; Lee Y
    Plant Cell Physiol; 2018 Jul; 59(7):1317-1325. PubMed ID: 29361141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxic metals and metalloids: Uptake, transport, detoxification, phytoremediation, and crop improvement for safer food.
    Zhao FJ; Tang Z; Song JJ; Huang XY; Wang P
    Mol Plant; 2022 Jan; 15(1):27-44. PubMed ID: 34619329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by cadmium and arsenic.
    Mendoza-Cózatl DG; Jobe TO; Hauser F; Schroeder JI
    Curr Opin Plant Biol; 2011 Oct; 14(5):554-62. PubMed ID: 21820943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation.
    Das N; Bhattacharya S; Maiti MK
    Plant Physiol Biochem; 2016 Aug; 105():297-309. PubMed ID: 27214086
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two facets of world arsenic problem solution: crop poisoning restriction and enforcement of phytoremediation.
    Kofroňová M; Mašková P; Lipavská H
    Planta; 2018 Jul; 248(1):19-35. PubMed ID: 29736625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana.
    Guo J; Xu W; Ma M
    J Hazard Mater; 2012 Jan; 199-200():309-13. PubMed ID: 22119299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New Molecular Mechanisms to Reduce Arsenic in Crops.
    Lindsay ER; Maathuis FJM
    Trends Plant Sci; 2017 Dec; 22(12):1016-1026. PubMed ID: 29056439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms to cope with arsenic or cadmium excess in plants.
    Verbruggen N; Hermans C; Schat H
    Curr Opin Plant Biol; 2009 Jun; 12(3):364-72. PubMed ID: 19501016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury.
    Park J; Song WY; Ko D; Eom Y; Hansen TH; Schiller M; Lee TG; Martinoia E; Lee Y
    Plant J; 2012 Jan; 69(2):278-88. PubMed ID: 21919981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants.
    Sun SK; Chen J; Zhao FJ
    J Exp Bot; 2023 Jun; 74(11):3286-3299. PubMed ID: 36861339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two metal-tolerance proteins, MTP1 and MTP4, are involved in Zn homeostasis and Cd sequestration in cucumber cells.
    Migocka M; Kosieradzka A; Papierniak A; Maciaszczyk-Dziubinska E; Posyniak E; Garbiec A; Filleur S
    J Exp Bot; 2015 Feb; 66(3):1001-15. PubMed ID: 25422498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium tolerance and hyperaccumulation in plants - A proteomic perspective of phytoremediation.
    Niu L; Li C; Wang W; Zhang J; Scali M; Li W; Liu H; Tai F; Hu X; Wu X
    Ecotoxicol Environ Saf; 2023 May; 256():114882. PubMed ID: 37037105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Safer food through plant science: reducing toxic element accumulation in crops.
    Clemens S
    J Exp Bot; 2019 Oct; 70(20):5537-5557. PubMed ID: 31408148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic hazards: strategies for tolerance and remediation by plants.
    Tripathi RD; Srivastava S; Mishra S; Singh N; Tuli R; Gupta DK; Maathuis FJ
    Trends Biotechnol; 2007 Apr; 25(4):158-65. PubMed ID: 17306392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic Uptake and Translocation in Plants.
    Li N; Wang J; Song WY
    Plant Cell Physiol; 2016 Jan; 57(1):4-13. PubMed ID: 26454880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L.
    Sun Y; Zhou Q; Diao C
    Bioresour Technol; 2008 Mar; 99(5):1103-10. PubMed ID: 17719774
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grafting systems for plant cadmium research: Insights for basic plant physiology and applied mitigation.
    Marques DN; Mason C; Stolze SC; Harzen A; Nakagami H; Skirycz A; Piotto FA; Azevedo RA
    Sci Total Environ; 2023 Sep; 892():164610. PubMed ID: 37270021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arsenic tolerance in Arabidopsis is mediated by two ABCC-type phytochelatin transporters.
    Song WY; Park J; Mendoza-Cózatl DG; Suter-Grotemeyer M; Shim D; Hörtensteiner S; Geisler M; Weder B; Rea PA; Rentsch D; Schroeder JI; Lee Y; Martinoia E
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):21187-92. PubMed ID: 21078981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Significance of vacuolar proton pumps and metal/H
    Khoudi H
    Physiol Plant; 2021 Sep; 173(1):384-393. PubMed ID: 33937997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives.
    Sarwar N; Imran M; Shaheen MR; Ishaque W; Kamran MA; Matloob A; Rehim A; Hussain S
    Chemosphere; 2017 Mar; 171():710-721. PubMed ID: 28061428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.