These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 29361216)

  • 1. Medical Imaging for the Tracking of Micromotors.
    Vilela D; Cossío U; Parmar J; Martínez-Villacorta AM; Gómez-Vallejo V; Llop J; Sánchez S
    ACS Nano; 2018 Feb; 12(2):1220-1227. PubMed ID: 29361216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RF plasma-enhanced conducting Polymer/W
    Cogal GC; Karaca GY; Uygun E; Kuralay F; Oksuz L; Remskar M; Oksuz AU
    Anal Chim Acta; 2020 Nov; 1138():69-78. PubMed ID: 33161986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically Controlled Living Micromotors for the Manipulation and Disruption of Biological Targets.
    Xin H; Zhao N; Wang Y; Zhao X; Pan T; Shi Y; Li B
    Nano Lett; 2020 Oct; 20(10):7177-7185. PubMed ID: 32935992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood proteins strongly reduce the mobility of artificial self-propelled micromotors.
    Wang H; Zhao G; Pumera M
    Chemistry; 2013 Dec; 19(49):16756-9. PubMed ID: 24166769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymer-based tubular microbots: role of composition and preparation.
    Gao W; Sattayasamitsathit S; Uygun A; Pei A; Ponedal A; Wang J
    Nanoscale; 2012 Apr; 4(7):2447-53. PubMed ID: 22374514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microrobotic system guided by photoacoustic computed tomography for targeted navigation in intestines
    Wu Z; Li L; Yang Y; Hu P; Li Y; Yang SY; Wang LV; Gao W
    Sci Robot; 2019 Jul; 4(32):. PubMed ID: 32632399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gating effect by thousands of bubble-propelled micromotors in macroscale channels.
    Teo WZ; Wang H; Pumera M
    Nanoscale; 2015 Jul; 7(27):11575-9. PubMed ID: 26086456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnesium-Based Micromotors: Water-Powered Propulsion, Multifunctionality, and Biomedical and Environmental Applications.
    Chen C; Karshalev E; Guan J; Wang J
    Small; 2018 Jun; 14(23):e1704252. PubMed ID: 29520991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual Ultrasound and Photoacoustic Tracking of Magnetically Driven Micromotors: From In Vitro to In Vivo.
    Aziz A; Holthof J; Meyer S; Schmidt OG; Medina-Sánchez M
    Adv Healthc Mater; 2021 Nov; 10(22):e2101077. PubMed ID: 34382354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two Forces Are Better than One: Combining Chemical and Acoustic Propulsion for Enhanced Micromotor Functionality.
    Ren L; Wang W; Mallouk TE
    Acc Chem Res; 2018 Sep; 51(9):1948-1956. PubMed ID: 30079719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond platinum: silver-catalyst based bubble-propelled tubular micromotors.
    Teo WZ; Wang H; Pumera M
    Chem Commun (Camb); 2016 Mar; 52(23):4333-6. PubMed ID: 26923278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder.
    Hortelao AC; Simó C; Guix M; Guallar-Garrido S; Julián E; Vilela D; Rejc L; Ramos-Cabrer P; Cossío U; Gómez-Vallejo V; Patiño T; Llop J; Sánchez S
    Sci Robot; 2021 Mar; 6(52):. PubMed ID: 34043548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visible-Light-Driven BiOI-Based Janus Micromotor in Pure Water.
    Dong R; Hu Y; Wu Y; Gao W; Ren B; Wang Q; Cai Y
    J Am Chem Soc; 2017 Feb; 139(5):1722-1725. PubMed ID: 28117995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrafast Nanocrystals Decorated Micromotors for On-Site Dynamic Chemical Processes.
    Jurado-Sánchez B; Wang J; Escarpa A
    ACS Appl Mater Interfaces; 2016 Aug; 8(30):19618-25. PubMed ID: 27387459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical Deposition Tailors the Catalytic Performance of MnO
    Liu W; Ge H; Gu Z; Lu X; Li J; Wang J
    Small; 2018 Nov; 14(45):e1802771. PubMed ID: 30239129
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glucose-Fueled Micromotors with Highly Efficient Visible-Light Photocatalytic Propulsion.
    Wang Q; Dong R; Wang C; Xu S; Chen D; Liang Y; Ren B; Gao W; Cai Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6201-6207. PubMed ID: 30672287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-propelled autonomous nanomotors meet microfluidics.
    Kherzi B; Pumera M
    Nanoscale; 2016 Oct; 8(40):17415-17421. PubMed ID: 27714185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. X-ray-Powered Micromotors.
    Xu Z; Chen M; Lee H; Feng SP; Park JY; Lee S; Kim JT
    ACS Appl Mater Interfaces; 2019 May; 11(17):15727-15732. PubMed ID: 30969101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manganese Oxide-Based Chemically Powered Micromotors.
    Safdar M; Wani OM; Jänis J
    ACS Appl Mater Interfaces; 2015 Nov; 7(46):25580-5. PubMed ID: 26551302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro and nanomotors in diagnostics.
    Chałupniak A; Morales-Narváez E; Merkoçi A
    Adv Drug Deliv Rev; 2015 Dec; 95():104-16. PubMed ID: 26408790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.