BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 29361275)

  • 1. Individuals with varus thrust do not increase knee adduction when running with body borne load.
    Brown TN; Kaplan JT; Cameron SE; Seymore KD; Ramsay JW
    J Biomech; 2018 Mar; 69():97-102. PubMed ID: 29361275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying varus and valgus thrust in individuals with severe knee osteoarthritis.
    Sosdian L; Hinman RS; Wrigley TV; Paterson KL; Dowsey M; Choong P; Bennell K
    Clin Biomech (Bristol, Avon); 2016 Nov; 39():44-51. PubMed ID: 27668846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of prolonged walking with body borne load on knee adduction biomechanics.
    Drew MD; Krammer SM; Brown TN
    Gait Posture; 2021 Feb; 84():192-197. PubMed ID: 33360641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Varus thrust in women with early medial knee osteoarthritis and its relation with the external knee adduction moment.
    Mahmoudian A; van Dieen JH; Bruijn SM; Baert IA; Faber GS; Luyten FP; Verschueren SM
    Clin Biomech (Bristol, Avon); 2016 Nov; 39():109-114. PubMed ID: 27744006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Body borne loads impact walk-to-run and running biomechanics.
    Brown TN; O'Donovan M; Hasselquist L; Corner BD; Schiffman JM
    Gait Posture; 2014; 40(1):237-42. PubMed ID: 24794647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Side-to-Side Differences in Varus Thrust and Knee Abduction Moment in High-Functioning Individuals With Chronic Anterior Cruciate Ligament Deficiency.
    Ismail SA; Simic M; Salmon LJ; Roe JP; Pinczewski LA; Smith R; Pappas E
    Am J Sports Med; 2019 Mar; 47(3):590-597. PubMed ID: 30525874
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thrust during ambulation and the progression of knee osteoarthritis.
    Chang A; Hayes K; Dunlop D; Hurwitz D; Song J; Cahue S; Genge R; Sharma L
    Arthritis Rheum; 2004 Dec; 50(12):3897-903. PubMed ID: 15593195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.
    Ramsay JW; Hancock CL; O'Donovan MP; Brown TN
    J Biomech; 2016 Dec; 49(16):3868-3874. PubMed ID: 27789034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soldier-relevant loads impact lower limb biomechanics during anticipated and unanticipated single-leg cutting movements.
    Brown TN; O'Donovan M; Hasselquist L; Corner B; Schiffman JM
    J Biomech; 2014 Nov; 47(14):3494-501. PubMed ID: 25257813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Individual selection of gait retraining strategies is essential to optimally reduce medial knee load during gait.
    Gerbrands TA; Pisters MF; Vanwanseele B
    Clin Biomech (Bristol, Avon); 2014 Aug; 29(7):828-34. PubMed ID: 24917175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Varus and the Development of Iliotibial Band Syndrome.
    Stickley CD; Presuto MM; Radzak KN; Bourbeau CM; Hetzler RK
    J Athl Train; 2018 Feb; 53(2):128-134. PubMed ID: 29373059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sex and limb differences during a single-leg cut with body borne load.
    Fain AC; Lobb NJ; Seymore KD; Brown TN
    Gait Posture; 2019 Oct; 74():7-13. PubMed ID: 31437734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lower knee extensor and flexor strength is associated with varus thrust in people with knee osteoarthritis.
    Espinosa SE; Costello KE; Souza RB; Kumar D
    J Biomech; 2020 Jun; 107():109865. PubMed ID: 32517867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of load carriage on biomechanical variables associated with tibial stress fractures in running.
    Baggaley M; Esposito M; Xu C; Unnikrishnan G; Reifman J; Edwards WB
    Gait Posture; 2020 Mar; 77():190-194. PubMed ID: 32058282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of walking poles on the knee adduction moment in patients with varus gonarthrosis.
    Bechard DJ; Birmingham TB; Zecevic AA; Jones IC; Leitch KM; Giffin JR; Jenkyn TR
    Osteoarthritis Cartilage; 2012 Dec; 20(12):1500-6. PubMed ID: 22944522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual-task and anticipation impact lower limb biomechanics during a single-leg cut with body borne load.
    Seymore KD; Cameron SE; Kaplan JT; Ramsay JW; Brown TN
    J Biomech; 2017 Dec; 65():131-137. PubMed ID: 29096985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Courses of change in knee adduction moment and lateral thrust differ up to 1 year after TKA.
    Shimada N; Deie M; Hirata K; Hiate Y; Orita N; Iwaki D; Ito Y; Kimura H; Pappas E; Ochi M
    Knee Surg Sports Traumatol Arthrosc; 2016 Aug; 24(8):2506-11. PubMed ID: 26183731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Varus thrust visualized during gait was associated with inverted foot in patients with knee osteoarthritis: An exploratory study.
    Ohi H; Iijima H; Fukutani N; Aoyama T; Kaneda E; Ohi K; Ito H; Matsuda S; Kaoru A
    Gait Posture; 2018 Mar; 61():269-275. PubMed ID: 29413796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bone mineral density in the proximal tibia varies as a function of static alignment and knee adduction angular momentum in individuals with medial knee osteoarthritis.
    Thorp LE; Wimmer MA; Block JA; Moisio KC; Shott S; Goker B; Sumner DR
    Bone; 2006 Nov; 39(5):1116-1122. PubMed ID: 16782419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Varus thrust and knee frontal plane dynamic motion in persons with knee osteoarthritis.
    Chang AH; Chmiel JS; Moisio KC; Almagor O; Zhang Y; Cahue S; Sharma L
    Osteoarthritis Cartilage; 2013 Nov; 21(11):1668-73. PubMed ID: 23948980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.