These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 29361316)

  • 41. The RNA helicase Aquarius exhibits structural adaptations mediating its recruitment to spliceosomes.
    De I; Bessonov S; Hofele R; dos Santos K; Will CL; Urlaub H; Lührmann R; Pena V
    Nat Struct Mol Biol; 2015 Feb; 22(2):138-44. PubMed ID: 25599396
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cryo-electron microscopy snapshots of the spliceosome: structural insights into a dynamic ribonucleoprotein machine.
    Fica SM; Nagai K
    Nat Struct Mol Biol; 2017 Oct; 24(10):791-799. PubMed ID: 28981077
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cryo-EM Studies of Pre-mRNA Splicing: From Sample Preparation to Model Visualization.
    Wilkinson ME; Lin PC; Plaschka C; Nagai K
    Annu Rev Biophys; 2018 May; 47():175-199. PubMed ID: 29494253
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure of the Post-catalytic Spliceosome from Saccharomyces cerevisiae.
    Bai R; Yan C; Wan R; Lei J; Shi Y
    Cell; 2017 Dec; 171(7):1589-1598.e8. PubMed ID: 29153833
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genetics and biochemistry remain essential in the structural era of the spliceosome.
    Mayerle M; Guthrie C
    Methods; 2017 Aug; 125():3-9. PubMed ID: 28132896
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The 35S U5 snRNP Is Generated from the Activated Spliceosome during In vitro Splicing.
    Makarova OV; Makarov EM
    PLoS One; 2015; 10(5):e0128430. PubMed ID: 26020933
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stable tri-snRNP integration is accompanied by a major structural rearrangement of the spliceosome that is dependent on Prp8 interaction with the 5' splice site.
    Boesler C; Rigo N; Agafonov DE; Kastner B; Urlaub H; Will CL; Lührmann R
    RNA; 2015 Nov; 21(11):1993-2005. PubMed ID: 26385511
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Small molecule inhibitors of yeast pre-mRNA splicing.
    Aukema KG; Chohan KK; Plourde GL; Reimer KB; Rader SD
    ACS Chem Biol; 2009 Sep; 4(9):759-68. PubMed ID: 19634919
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structure of a human catalytic step I spliceosome.
    Zhan X; Yan C; Zhang X; Lei J; Shi Y
    Science; 2018 Feb; 359(6375):537-545. PubMed ID: 29301961
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Spliceosome structure: piece by piece.
    Ritchie DB; Schellenberg MJ; MacMillan AM
    Biochim Biophys Acta; 2009; 1789(9-10):624-33. PubMed ID: 19733268
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Crystal structure of a core spliceosomal protein interface.
    Schellenberg MJ; Edwards RA; Ritchie DB; Kent OA; Golas MM; Stark H; Lührmann R; Glover JN; MacMillan AM
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1266-71. PubMed ID: 16432215
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nuclear cyclophilins affect spliceosome assembly and function in vitro.
    Adams BM; Coates MN; Jackson SR; Jurica MS; Davis TL
    Biochem J; 2015 Jul; 469(2):223-33. PubMed ID: 25967372
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The spliceosome: a self-organized macromolecular machine in the nucleus?
    Rino J; Carmo-Fonseca M
    Trends Cell Biol; 2009 Aug; 19(8):375-84. PubMed ID: 19616950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. How Does the Spliceosome Catalyze Intron Lariat Formation? Insights from Quantum Mechanics/Molecular Mechanics Free-Energy Simulations.
    Huang W; Huang Y; Xu J; Liao JL
    J Phys Chem B; 2019 Jul; 123(28):6049-6055. PubMed ID: 31267745
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Crystallization and biochemical characterization of the human spliceosomal Aar2-Prp8(RNaseH) complex.
    Santos K; Preussner M; Heroven AC; Weber G
    Acta Crystallogr F Struct Biol Commun; 2015 Nov; 71(Pt 11):1421-8. PubMed ID: 26527271
    [TBL] [Abstract][Full Text] [Related]  

  • 56. CryoEM structures of two spliceosomal complexes: starter and dessert at the spliceosome feast.
    Nguyen TH; Galej WP; Fica SM; Lin PC; Newman AJ; Nagai K
    Curr Opin Struct Biol; 2016 Feb; 36():48-57. PubMed ID: 26803803
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The spliceosome: design principles of a dynamic RNP machine.
    Wahl MC; Will CL; Lührmann R
    Cell; 2009 Feb; 136(4):701-18. PubMed ID: 19239890
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis.
    Wan R; Yan C; Bai R; Wang L; Huang M; Wong CC; Shi Y
    Science; 2016 Jan; 351(6272):466-75. PubMed ID: 26743623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Network theory reveals principles of spliceosome structure and dynamics.
    Kaur H; van der Feltz C; Sun Y; Hoskins AA
    Structure; 2022 Jan; 30(1):190-200.e2. PubMed ID: 34592160
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spliceosome database: a tool for tracking components of the spliceosome.
    Cvitkovic I; Jurica MS
    Nucleic Acids Res; 2013 Jan; 41(Database issue):D132-41. PubMed ID: 23118483
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.