These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 29361465)

  • 1. Unification of Protein Abundance Datasets Yields a Quantitative Saccharomyces cerevisiae Proteome.
    Ho B; Baryshnikova A; Brown GW
    Cell Syst; 2018 Feb; 6(2):192-205.e3. PubMed ID: 29361465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A proteome-integrated, carbon source dependent genetic regulatory network in Saccharomyces cerevisiae.
    Garcia-Albornoz M; Holman SW; Antonisse T; Daran-Lapujade P; Teusink B; Beynon RJ; Hubbard SJ
    Mol Omics; 2020 Feb; 16(1):59-72. PubMed ID: 31868867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of a unified protein abundance dataset into the Saccharomyces genome database.
    Nash RS; Weng S; Karra K; Wong ED; Engel SR; Cherry JM;
    Database (Oxford); 2020 Jan; 2020():. PubMed ID: 32128557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive mass-spectrometry-based proteome quantification of haploid versus diploid yeast.
    de Godoy LM; Olsen JV; Cox J; Nielsen ML; Hubner NC; Fröhlich F; Walther TC; Mann M
    Nature; 2008 Oct; 455(7217):1251-4. PubMed ID: 18820680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deglycosylation systematically improves N-glycoprotein identification in liquid chromatography-tandem mass spectrometry proteomics for analysis of cell wall stress responses in Saccharomyces cerevisiae lacking Alg3p.
    Bailey UM; Schulz BL
    J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Apr; 923-924():16-21. PubMed ID: 23454304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-Free Quantitative Proteomics in Yeast.
    Léger T; Garcia C; Videlier M; Camadro JM
    Methods Mol Biol; 2016; 1361():289-307. PubMed ID: 26483028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative differential proteomics of yeast extracellular matrix: there is more to it than meets the eye.
    Faria-Oliveira F; Carvalho J; Ferreira C; Hernáez ML; Gil C; Lucas C
    BMC Microbiol; 2015 Nov; 15():271. PubMed ID: 26608260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiplexed proteome profiling of carbon source perturbations in two yeast species with SL-SP3-TMT.
    Paulo JA; Navarrete-Perea J; Gygi SP
    J Proteomics; 2020 Jan; 210():103531. PubMed ID: 31626996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streamlined Tandem Mass Tag (SL-TMT) Protocol: An Efficient Strategy for Quantitative (Phospho)proteome Profiling Using Tandem Mass Tag-Synchronous Precursor Selection-MS3.
    Navarrete-Perea J; Yu Q; Gygi SP; Paulo JA
    J Proteome Res; 2018 Jun; 17(6):2226-2236. PubMed ID: 29734811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted proteome analysis of single-gene deletion strains of Saccharomyces cerevisiae lacking enzymes in the central carbon metabolism.
    Matsuda F; Kinoshita S; Nishino S; Tomita A; Shimizu H
    PLoS One; 2017; 12(2):e0172742. PubMed ID: 28241048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mass-Spectrometry-Based Near-Complete Draft of the
    Gao Y; Ping L; Duong D; Zhang C; Dammer EB; Li Y; Chen P; Chang L; Gao H; Wu J; Xu P
    J Proteome Res; 2021 Feb; 20(2):1328-1340. PubMed ID: 33443437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A complete mass-spectrometric map of the yeast proteome applied to quantitative trait analysis.
    Picotti P; Clément-Ziza M; Lam H; Campbell DS; Schmidt A; Deutsch EW; Röst H; Sun Z; Rinner O; Reiter L; Shen Q; Michaelson JJ; Frei A; Alberti S; Kusebauch U; Wollscheid B; Moritz RL; Beyer A; Aebersold R
    Nature; 2013 Feb; 494(7436):266-70. PubMed ID: 23334424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic basis of proteome variation in yeast.
    Foss EJ; Radulovic D; Shaffer SA; Ruderfer DM; Bedalov A; Goodlett DR; Kruglyak L
    Nat Genet; 2007 Nov; 39(11):1369-75. PubMed ID: 17952072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative proteomic analysis of Saccharomyces cerevisiae under different nitrogen sources.
    Zhao S; Zhao X; Zou H; Fu J; Du G; Zhou J; Chen J
    J Proteomics; 2014 Apr; 101():102-12. PubMed ID: 24530623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteome-wide quantitative multiplexed profiling of protein expression: carbon-source dependency in Saccharomyces cerevisiae.
    Paulo JA; O'Connell JD; Gaun A; Gygi SP
    Mol Biol Cell; 2015 Nov; 26(22):4063-74. PubMed ID: 26399295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping the Saccharomyces cerevisiae Spatial Proteome with High Resolution Using hyperLOPIT.
    Nightingale DJH; Oliver SG; Lilley KS
    Methods Mol Biol; 2019; 2049():165-190. PubMed ID: 31602611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proteome-wide abundance profiling of yeast deletion strains for GET pathway members using sample multiplexing.
    Gygi JS; Liu X; Levi BP; Paulo JA
    Proteomics; 2024 Sep; 24(17):e2300303. PubMed ID: 37882342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis.
    Chong YT; Koh JL; Friesen H; Duffy SK; Cox MJ; Moses A; Moffat J; Boone C; Andrews BJ
    Cell; 2015 Jun; 161(6):1413-24. PubMed ID: 26046442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative mass spectrometry-based multiplexing compares the abundance of 5000 S. cerevisiae proteins across 10 carbon sources.
    Paulo JA; O'Connell JD; Everley RA; O'Brien J; Gygi MA; Gygi SP
    J Proteomics; 2016 Oct; 148():85-93. PubMed ID: 27432472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection.
    Chong YT; Cox MJ; Andrews B
    Adv Exp Med Biol; 2012; 736():169-78. PubMed ID: 22161327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.