These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29361600)

  • 1. How does a slender tibia resist buckling? Effect of material, structural and geometric characteristics on buckling behaviour of the hindleg tibia in stick insect postembryonic development.
    Schmitt M; Büscher TH; Gorb SN; Rajabi H
    J Exp Biol; 2018 Feb; 221(Pt 4):. PubMed ID: 29361600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A buckling region in locust hindlegs contains resilin and absorbs energy when jumping or kicking goes wrong.
    Bayley TG; Sutton GP; Burrows M
    J Exp Biol; 2012 Apr; 215(Pt 7):1151-61. PubMed ID: 22399660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cuticle sclerotization determines the difference between the elastic moduli of locust tibiae.
    Li C; Gorb SN; Rajabi H
    Acta Biomater; 2020 Feb; 103():189-195. PubMed ID: 31843719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fatigue of insect cuticle.
    Dirks JH; Parle E; Taylor D
    J Exp Biol; 2013 May; 216(Pt 10):1924-7. PubMed ID: 23393276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Encoding of force increases and decreases by tibial campaniform sensilla in the stick insect, Carausius morosus.
    Zill SN; Büschges A; Schmitz J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):851-67. PubMed ID: 21544617
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of the Young's modulus of the epicuticle of the smooth adhesive organs of Carausius morosus using tensile testing.
    Bennemann M; Backhaus S; Scholz I; Park D; Mayer J; Baumgartner W
    J Exp Biol; 2014 Oct; 217(Pt 20):3677-87. PubMed ID: 25214493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buckling failures in insect exoskeletons.
    Parle E; Herbaj S; Sheils F; Larmon H; Taylor D
    Bioinspir Biomim; 2015 Dec; 11(1):016003. PubMed ID: 26678374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust.
    Büschges A; Wolf H
    J Neurophysiol; 1995 May; 73(5):1843-60. PubMed ID: 7623085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Factors in the Adaptations of Insect Tibia Cuticle.
    Parle E; Larmon H; Taylor D
    PLoS One; 2016; 11(8):e0159262. PubMed ID: 27486904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of aminergic and peptidergic substances on heart beat frequency in the stick insect Carausius morosus (Insecta, Phasmatodea).
    Marco HG; Katali OKH; Gäde G
    Arch Insect Biochem Physiol; 2018 Aug; 98(4):e21469. PubMed ID: 29691893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stiffness distribution in insect cuticle: a continuous or a discontinuous profile?
    Rajabi H; Jafarpour M; Darvizeh A; Dirks JH; Gorb SN
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28724628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanics of smooth adhesive organs in stick insects: pads are mechanically anisotropic and softer towards the adhesive surface.
    Scholz I; Baumgartner W; Federle W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Apr; 194(4):373-84. PubMed ID: 18219488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Feedback circuit of the knee tendon reflex in the walking-stick insect carausius morosus: reactions on passive movements of the tibia].
    Bässler U
    Kybernetik; 1972 Dec; 12(1):8-20. PubMed ID: 4663627
    [No Abstract]   [Full Text] [Related]  

  • 14. Biomechanics of the stick insect antenna: damping properties and structural correlates of the cuticle.
    Dirks JH; Dürr V
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):2031-42. PubMed ID: 22098903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionally different pads on the same foot allow control of attachment: stick insects have load-sensitive "heel" pads for friction and shear-sensitive "toe" pads for adhesion.
    Labonte D; Federle W
    PLoS One; 2013; 8(12):e81943. PubMed ID: 24349156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The extensor tibiae muscle of the stick insect: biomechanical properties of an insect walking leg muscle.
    Guschlbauer C; Scharstein H; Büschges A
    J Exp Biol; 2007 Mar; 210(Pt 6):1092-108. PubMed ID: 17337721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Locomotor resilience through load-dependent modulation of muscle co-contraction.
    Günzel Y; Schmitz J; Dürr V
    J Exp Biol; 2022 Sep; 225(18):. PubMed ID: 36039914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postembryonic developmental changes in photoreceptors of the stick insect Carausius morosus enhance the shift to an adult nocturnal life-style.
    Frolov R; Immonen EV; Vähäsöyrinki M; Weckström M
    J Neurosci; 2012 Nov; 32(47):16821-31. PubMed ID: 23175835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional principles of steerable multi-element probes in insects.
    Cerkvenik U; Dodou D; van Leeuwen JL; Gussekloo SWS
    Biol Rev Camb Philos Soc; 2019 Apr; 94(2):555-574. PubMed ID: 30259619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects.
    Clemente CJ; Bullock JM; Beale A; Federle W
    J Exp Biol; 2010 Feb; 213(4):635-42. PubMed ID: 20118314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.