These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29361746)

  • 1. The Enhanced Catalytic Performance and Stability of Rh/γ-Al₂O₃ Catalyst Synthesized by Atomic Layer Deposition (ALD) for Methane Dry Reforming.
    Li Y; Jiang J; Zhu C; Li L; Li Q; Ding Y; Yang W
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29361746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into an atomic layer deposition (ALD) grown Al
    Kim SM; Armutlulu A; Liao WC; Hosseini D; Stoian D; Chen Z; Abdala PM; Copéret C; Müller C
    Catal Sci Technol; 2021 Nov; 11(23):7563-7577. PubMed ID: 34912540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sinter-resistant Rh nanoparticles supported on γ-Al
    Chu S; Cai Z; Wang M; Zheng Y; Wang Y; Zhou Z; Weng W
    Nanoscale; 2020 Oct; 12(40):20922-20932. PubMed ID: 33090164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and stabilization of supported metal catalysts by atomic layer deposition.
    Lu J; Elam JW; Stair PC
    Acc Chem Res; 2013 Aug; 46(8):1806-15. PubMed ID: 23480735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Selectivity and Stability in Methane Dry Reforming by Atomic Layer Deposition on Ni-CeO
    Lucas J; Padmanabha Naveen NS; Janik MJ; Alexopoulos K; Noh G; Aireddy D; Ding K; Dorman JA; Dooley KM
    ACS Catal; 2024 Jun; 14(12):9115-9133. PubMed ID: 38933468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition.
    Joo S; Seong A; Kwon O; Kim K; Lee JH; Gorte RJ; Vohs JM; Han JW; Kim G
    Sci Adv; 2020 Aug; 6(35):eabb1573. PubMed ID: 32923635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of VO
    Wang G; Xu H; Lu K; Ding Z; Bing L
    Turk J Chem; 2020; 44(1):112-124. PubMed ID: 33488147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CO and CO₂ Methanation Over Ni/γ-Al₂O₃ Prepared by Deposition-Precipitation Method.
    Le TA; Kang JK; Lee SH; Park ED
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3252-3262. PubMed ID: 30744751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pt/C catalysts synthesized in a commercial particle atomic layer deposition system enabling improved durability in fuel cells.
    Pescher F; Stiegeler J; Heizmann PA; Klose C; Vierrath S; Breitwieser M
    RSC Adv; 2024 Oct; 14(44):32358-32369. PubMed ID: 39403164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Influence of Promoter on Ni(15)/La(5)/γ-Al2O3 Catalyst in CO2-Steam Reforming of Methane to Syngas at High Pressure.
    Ok HJ; Park MH; Moon DJ; Kim JH; Park NC; Kim YC
    J Nanosci Nanotechnol; 2015 Jan; 15(1):449-53. PubMed ID: 26328379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mo-modified Pd/Al₂O₃ catalysts for benzene catalytic combustion.
    He Z; He Z; Wang D; Bo Q; Fan T; Jiang Y
    J Environ Sci (China); 2014 Jul; 26(7):1481-7. PubMed ID: 25079997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al
    Ameen M; Azizan MT; Ramli A; Yusup S; Alnarabiji MS
    Ultrason Sonochem; 2019 Mar; 51():90-102. PubMed ID: 30514489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Syngas Production via Combined Steam and Carbon Dioxide Reforming of Methane Over Ni-Mo-Sb/Al₂O₃ Catalysts.
    Ryoo H; Ma BC; Kim YC
    J Nanosci Nanotechnol; 2019 Feb; 19(2):988-990. PubMed ID: 30360186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of the Coupling Co-Precipitation and Impregnation Catalyst Ag/Al₂O₃ with High Catalytic Performance in Selective Catalytic Reduction of NO with C₃H
    Xu J; Zhang C; Guo F; Chen Z; Xie J
    J Nanosci Nanotechnol; 2020 Feb; 20(2):1170-1176. PubMed ID: 31383117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative synthesis and physicochemical characterizations of Ni/Al2O3-MgO nanocatalyst via sequential impregnation and sol-gel methods used for CO2 reforming of methane.
    Aghamohammadi S; Haghighi M; Karimipour S
    J Nanosci Nanotechnol; 2013 Jul; 13(7):4872-82. PubMed ID: 23901507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Stability and Catalytic Performance of Active Rh Sites on Al
    Guo F; Li J; Zhang Y; Yang X
    J Phys Chem Lett; 2022 Sep; 13(38):8825-8832. PubMed ID: 36107836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Ce-Promoted Ni/Al₂O₃ Methane Steam Reforming Catalysts by Impregnation.
    Lim YS; Lee MJ; Lee KJ; Lee S; Hwang H
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4327-4330. PubMed ID: 31968467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Catalytic Performance of a CeO
    She W; Qi T; Cui M; Yan P; Ng SW; Li W; Li G
    ACS Appl Mater Interfaces; 2018 May; 10(17):14698-14707. PubMed ID: 29638107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sulfur poisoning mechanism of steam reforming catalysts: an X-ray absorption near edge structure (XANES) spectroscopic study.
    Chen Y; Xie C; Li Y; Song C; Bolin TB
    Phys Chem Chem Phys; 2010 Jun; 12(21):5707-11. PubMed ID: 20431820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.