These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29362356)

  • 1. Suppression of interdiffusion-induced voiding in oxidation of copper nanowires with twin-modified surface.
    Huang CL; Weng WL; Liao CN; Tu KN
    Nat Commun; 2018 Jan; 9(1):340. PubMed ID: 29362356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface-mediated Kirkendall effect and nanoscale void migration in bimetallic nanoparticles during interdiffusion.
    Chee SW; Wong ZM; Baraissov Z; Tan SF; Tan TL; Mirsaidov U
    Nat Commun; 2019 Jun; 10(1):2831. PubMed ID: 31249286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the Formation of Nanocavities in Kirkendall Nanoobjects through Sequential Thermal Ex Situ Oxidation and In Situ Reduction Reactions.
    Mel AA; Tessier PY; Buffiere M; Gautron E; Ding J; Du K; Choi CH; Konstantinidis S; Snyders R; Bittencourt C; Molina-Luna L
    Small; 2016 Jun; 12(21):2885-92. PubMed ID: 27061060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced photolysis stability of Cu
    Huang CL; Weng WL; Huang YS; Liao CN
    Nanoscale; 2019 Aug; 11(29):13709-13713. PubMed ID: 31194206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow alloy nanostructures templated by Au nanorods: synthesis, mechanistic insights, and electrocatalytic activity.
    Xue M; Tan Y
    Nanoscale; 2014 Nov; 6(21):12500-14. PubMed ID: 25166262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joining copper oxide nanotube arrays driven by the nanoscale Kirkendall effect.
    Chun SR; Sasangka WA; Ng MZ; Liu Q; Du A; Zhu J; Ng CM; Liu ZQ; Chiam SY; Gan CL
    Small; 2013 Aug; 9(15):2546-52, 2545. PubMed ID: 23401318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles.
    Susman MD; Feldman Y; Bendikov TA; Vaskevich A; Rubinstein I
    Nanoscale; 2017 Aug; 9(34):12573-12589. PubMed ID: 28820220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diameter dependence of the void formation in the oxidation of nickel nanowires.
    Ren Y; Chiam SY; Chim WK
    Nanotechnology; 2011 Jun; 22(23):235606. PubMed ID: 21483086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications.
    Zhao S; Han F; Li J; Meng X; Huang W; Cao D; Zhang G; Sun R; Wong CP
    Small; 2018 Jun; 14(26):e1800047. PubMed ID: 29707894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid.
    Xu L; Yang Y; Hu ZW; Yu SH
    ACS Nano; 2016 Mar; 10(3):3823-34. PubMed ID: 26938982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Electrochemical Response of Single Crystalline Copper Nanowires to Atmospheric Air and Aqueous Solution.
    Zhang B; Chen B; Wu J; Hao S; Yang G; Cao X; Jing L; Zhu M; Tsang SH; Teo EH; Huang Y
    Small; 2017 Mar; 13(10):. PubMed ID: 28026122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Void coalescence in core/alloy nanoparticles with stainless interfaces.
    Wu W; Maye MM
    Small; 2014 Jan; 10(2):271-6. PubMed ID: 23881842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Twin-mediated epitaxial growth of highly lattice-mismatched Cu/Ag core-shell nanowires.
    Weng WL; Hsu CY; Lee JS; Fan HH; Liao CN
    Nanoscale; 2018 May; 10(21):9862-9866. PubMed ID: 29790560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect-driven selective metal oxidation at atomic scale.
    Zhu Q; Pan Z; Zhao Z; Cao G; Luo L; Ni C; Wei H; Zhang Z; Sansoz F; Wang J
    Nat Commun; 2021 Jan; 12(1):558. PubMed ID: 33495461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials.
    Barako MT; Isaacson SG; Lian F; Pop E; Dauskardt RH; Goodson KE; Tice J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):42067-42074. PubMed ID: 29119783
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly ordered hollow oxide nanostructures: the Kirkendall effect at the nanoscale.
    El Mel AA; Buffière M; Tessier PY; Konstantinidis S; Xu W; Du K; Wathuthanthri I; Choi CH; Bittencourt C; Snyders R
    Small; 2013 Sep; 9(17):2838-43. PubMed ID: 23440974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent.
    Li KC; Chu HC; Lin Y; Tuan HY; Hu YC
    ACS Appl Mater Interfaces; 2016 May; 8(19):12082-90. PubMed ID: 27111420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twin-Boundary Reduced Surface Diffusion on Electrically Stressed Copper Nanowires.
    Weng WL; Chen HY; Ting YH; Chen HT; Wu WW; Tu KN; Liao CN
    Nano Lett; 2022 Nov; 22(22):9071-9076. PubMed ID: 36342418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step Fabrication of Stretchable Copper Nanowire Conductors by a Fast Photonic Sintering Technique and Its Application in Wearable Devices.
    Ding S; Jiu J; Gao Y; Tian Y; Araki T; Sugahara T; Nagao S; Nogi M; Koga H; Suganuma K; Uchida H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6190-9. PubMed ID: 26830466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Core-decomposition-facilitated fabrication of hollow rare-earth silicate nanowalnuts from core-shell structures via the Kirkendall effect.
    Zhou W; Zou R; Yang X; Huang N; Huang J; Liang H; Wang J
    Nanoscale; 2015 Aug; 7(32):13715-22. PubMed ID: 26220051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.