These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Hollow alloy nanostructures templated by Au nanorods: synthesis, mechanistic insights, and electrocatalytic activity. Xue M; Tan Y Nanoscale; 2014 Nov; 6(21):12500-14. PubMed ID: 25166262 [TBL] [Abstract][Full Text] [Related]
6. Joining copper oxide nanotube arrays driven by the nanoscale Kirkendall effect. Chun SR; Sasangka WA; Ng MZ; Liu Q; Du A; Zhu J; Ng CM; Liu ZQ; Chiam SY; Gan CL Small; 2013 Aug; 9(15):2546-52, 2545. PubMed ID: 23401318 [TBL] [Abstract][Full Text] [Related]
7. Real-time plasmon spectroscopy study of the solid-state oxidation and Kirkendall void formation in copper nanoparticles. Susman MD; Feldman Y; Bendikov TA; Vaskevich A; Rubinstein I Nanoscale; 2017 Aug; 9(34):12573-12589. PubMed ID: 28820220 [TBL] [Abstract][Full Text] [Related]
8. Diameter dependence of the void formation in the oxidation of nickel nanowires. Ren Y; Chiam SY; Chim WK Nanotechnology; 2011 Jun; 22(23):235606. PubMed ID: 21483086 [TBL] [Abstract][Full Text] [Related]
9. Advancements in Copper Nanowires: Synthesis, Purification, Assemblies, Surface Modification, and Applications. Zhao S; Han F; Li J; Meng X; Huang W; Cao D; Zhang G; Sun R; Wong CP Small; 2018 Jun; 14(26):e1800047. PubMed ID: 29707894 [TBL] [Abstract][Full Text] [Related]
10. Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid. Xu L; Yang Y; Hu ZW; Yu SH ACS Nano; 2016 Mar; 10(3):3823-34. PubMed ID: 26938982 [TBL] [Abstract][Full Text] [Related]
11. The Electrochemical Response of Single Crystalline Copper Nanowires to Atmospheric Air and Aqueous Solution. Zhang B; Chen B; Wu J; Hao S; Yang G; Cao X; Jing L; Zhu M; Tsang SH; Teo EH; Huang Y Small; 2017 Mar; 13(10):. PubMed ID: 28026122 [TBL] [Abstract][Full Text] [Related]
12. Void coalescence in core/alloy nanoparticles with stainless interfaces. Wu W; Maye MM Small; 2014 Jan; 10(2):271-6. PubMed ID: 23881842 [TBL] [Abstract][Full Text] [Related]
14. Defect-driven selective metal oxidation at atomic scale. Zhu Q; Pan Z; Zhao Z; Cao G; Luo L; Ni C; Wei H; Zhang Z; Sansoz F; Wang J Nat Commun; 2021 Jan; 12(1):558. PubMed ID: 33495461 [TBL] [Abstract][Full Text] [Related]
15. Dense Vertically Aligned Copper Nanowire Composites as High Performance Thermal Interface Materials. Barako MT; Isaacson SG; Lian F; Pop E; Dauskardt RH; Goodson KE; Tice J ACS Appl Mater Interfaces; 2017 Dec; 9(48):42067-42074. PubMed ID: 29119783 [TBL] [Abstract][Full Text] [Related]
16. Highly ordered hollow oxide nanostructures: the Kirkendall effect at the nanoscale. El Mel AA; Buffière M; Tessier PY; Konstantinidis S; Xu W; Du K; Wathuthanthri I; Choi CH; Bittencourt C; Snyders R Small; 2013 Sep; 9(17):2838-43. PubMed ID: 23440974 [TBL] [Abstract][Full Text] [Related]
17. Construction of a Reciprocal-Supporting Phenol-amine@CuNW Network for Antisedimentation Conductive Ink. Luo Z; Du P; Guo Z; Song M; Li B; Cai Z; Ge F ACS Appl Mater Interfaces; 2023 Jun; 15(22):27422-27433. PubMed ID: 37221852 [TBL] [Abstract][Full Text] [Related]
18. PEGylated Copper Nanowires as a Novel Photothermal Therapy Agent. Li KC; Chu HC; Lin Y; Tuan HY; Hu YC ACS Appl Mater Interfaces; 2016 May; 8(19):12082-90. PubMed ID: 27111420 [TBL] [Abstract][Full Text] [Related]