These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29362517)

  • 1. Abundance of DNA adducts of 4-oxo-2-alkenals, lipid peroxidation-derived highly reactive genotoxins.
    Kawai Y; Nuka E
    J Clin Biochem Nutr; 2018 Jan; 62(1):3-10. PubMed ID: 29362517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-catalyzed oxidation of 2-alkenals generates genotoxic 4-oxo-2-alkenals during lipid peroxidation.
    Nuka E; Tomono S; Ishisaka A; Kato Y; Miyoshi N; Kawai Y
    Biosci Biotechnol Biochem; 2016 Oct; 80(10):2007-13. PubMed ID: 27281652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 2'-deoxycytidine in free nucleosides and double-stranded DNA as the major target of lipid peroxidation products.
    Kawai Y; Uchida K; Osawa T
    Free Radic Biol Med; 2004 Mar; 36(5):529-41. PubMed ID: 14980698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 2-Alkenal modification of hemoglobin: Identification of a novel hemoglobin-specific alkanoic acid-histidine adduct.
    Yoshitake J; Shibata T; Shimayama C; Uchida K
    Redox Biol; 2019 May; 23():101115. PubMed ID: 30819615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Endogenous glutathione adducts.
    Blair IA
    Curr Drug Metab; 2006 Dec; 7(8):853-72. PubMed ID: 17168687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative DNA damage and cardiovascular disease.
    Lee SH; Blair IA
    Trends Cardiovasc Med; 2001; 11(3-4):148-55. PubMed ID: 11686005
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous formation of protein adducts with carcinogenic aldehydes: implications for oxidative stress.
    Ichihashi K; Osawa T; Toyokuni S; Uchida K
    J Biol Chem; 2001 Jun; 276(26):23903-13. PubMed ID: 11283024
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genotoxic lipid peroxidation products: their DNA damaging properties and role in formation of endogenous DNA adducts.
    Burcham PC
    Mutagenesis; 1998 May; 13(3):287-305. PubMed ID: 9643589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative structure-activity relationship for 4-hydroxy-2-alkenal induced cytotoxicity in L6 muscle cells.
    Pillon NJ; Soulère L; Vella RE; Croze M; Caré BR; Soula HA; Doutheau A; Lagarde M; Soulage CO
    Chem Biol Interact; 2010 Oct; 188(1):171-80. PubMed ID: 20619253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemistry and analysis of HNE and other prominent carbonyl-containing lipid oxidation compounds.
    Sousa BC; Pitt AR; Spickett CM
    Free Radic Biol Med; 2017 Oct; 111():294-308. PubMed ID: 28192230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid hydroperoxide-mediated DNA damage.
    Blair IA
    Exp Gerontol; 2001 Sep; 36(9):1473-81. PubMed ID: 11525870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.
    Catalá A
    Chem Phys Lipids; 2009 Jan; 157(1):1-11. PubMed ID: 18977338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation of a linoleate-derived γ-hydroperoxy-α,β-unsaturated epoxide to γ-hydroxy- and γ-oxo-alkenals involves a unique pseudo-symmetrical diepoxycarbinyl radical.
    Gu X; Salomon RG
    Free Radic Biol Med; 2012 Feb; 52(3):601-606. PubMed ID: 22155057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Histidine and lysine as targets of oxidative modification.
    Uchida K
    Amino Acids; 2003 Dec; 25(3-4):249-57. PubMed ID: 14661088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Covalent adducts arising from the decomposition products of lipid hydroperoxides in the presence of cytochrome c.
    Williams MV; Wishnok JS; Tannenbaum SR
    Chem Res Toxicol; 2007 May; 20(5):767-75. PubMed ID: 17407328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Strecker-type degradation of phenylalanine initiated by 4-oxo-2-alkenals in comparison to that initiated by 2,4-alkadienals, 4,5-epoxy-2-alkenals, or 4-hydroxy-2-nonenal.
    Zamora R; Alcón E; Hidalgo FJ
    J Agric Food Chem; 2013 Oct; 61(43):10231-7. PubMed ID: 23360317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenolic trapping of lipid oxidation products 4-oxo-2-alkenals.
    Hidalgo FJ; Aguilar I; Zamora R
    Food Chem; 2018 Feb; 240():822-830. PubMed ID: 28946347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 1,N2-ethenodeoxyguanosine as a potential marker for DNA adduct formation by trans-4-hydroxy-2-nonenal.
    Sodum RS; Chung FL
    Cancer Res; 1988 Jan; 48(2):320-3. PubMed ID: 3335007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for in situ ethanolamine phospholipid adducts with hydroxy-alkenals.
    Bacot S; Bernoud-Hubac N; Chantegrel B; Deshayes C; Doutheau A; Ponsin G; Lagarde M; Guichardant M
    J Lipid Res; 2007 Apr; 48(4):816-25. PubMed ID: 17220481
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Immunohistochemical detection of a substituted 1,N(2)-ethenodeoxyguanosine adduct by omega-6 polyunsaturated fatty acid hydroperoxides in the liver of rats fed a choline-deficient, L-amino acid-defined diet.
    Kawai Y; Kato Y; Nakae D; Kusuoka O; Konishi Y; Uchida K; Osawa T
    Carcinogenesis; 2002 Mar; 23(3):485-9. PubMed ID: 11895864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.