These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 29362760)

  • 1. A comparison of the sensory and rheological properties of different cellulosic fibres for food.
    Agarwal D; Hewson L; Foster TJ
    Food Funct; 2018 Feb; 9(2):1144-1151. PubMed ID: 29362760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rheology of regenerated cellulose suspension and influence of sodium alginate.
    Jiang Y; De La Cruz JA; Ding L; Wang B; Feng X; Mao Z; Xu H; Sui X
    Int J Biol Macromol; 2020 Apr; 148():811-816. PubMed ID: 31962069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheology and microstructure of aqueous suspensions of nanocrystalline cellulose rods.
    Xu Y; Atrens AD; Stokes JR
    J Colloid Interface Sci; 2017 Jun; 496():130-140. PubMed ID: 28214623
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rheology of nanocrystalline cellulose aqueous suspensions.
    Shafiei-Sabet S; Hamad WY; Hatzikiriakos SG
    Langmuir; 2012 Dec; 28(49):17124-33. PubMed ID: 23146090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of different moisture contents on the structural and functional properties of cellulose with cell wall components in different citrus fibres.
    Kristensen K; Warne G; Agarwal D; Foster TJ
    Food Funct; 2022 Mar; 13(5):2756-2767. PubMed ID: 35171166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-cellulosic materials: the impact of water on their dissolution in DMAc/LiCl.
    Hasani M; Henniges U; Idström A; Nordstierna L; Westman G; Rosenau T; Potthast A
    Carbohydr Polym; 2013 Nov; 98(2):1565-72. PubMed ID: 24053841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ rheometry of concentrated cellulose fibre suspensions and relationships with enzymatic hydrolysis.
    Nguyen TC; Anne-Archard D; Coma V; Cameleyre X; Lombard E; Binet C; Nouhen A; To KA; Fillaudeau L
    Bioresour Technol; 2013 Apr; 133():563-72. PubMed ID: 23466624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of rheological properties of dissolved cellulose/microfibrillated cellulose blend suspensions on film forming.
    Saarikoski E; Rissanen M; Seppälä J
    Carbohydr Polym; 2015 Mar; 119():62-70. PubMed ID: 25563945
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Progress in Rheology of Cellulose Nanofibril Suspensions.
    Nechyporchuk O; Belgacem MN; Pignon F
    Biomacromolecules; 2016 Jul; 17(7):2311-20. PubMed ID: 27310523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions between microfibrillar cellulose and carboxymethyl cellulose in an aqueous suspension.
    Agarwal D; MacNaughtan W; Foster TJ
    Carbohydr Polym; 2018 Apr; 185():112-119. PubMed ID: 29421046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties.
    Miocinovic J; Tomic N; Dojnov B; Tomasevic I; Stojanovic S; Djekic I; Vujcic Z
    J Sci Food Agric; 2018 Mar; 98(4):1291-1299. PubMed ID: 28758215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.
    Tang Y; Hu X; Zhang X; Guo D; Zhang J; Kong F
    Carbohydr Polym; 2016 Oct; 151():752-759. PubMed ID: 27474622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Viscoelastic characteristics of all cellulose suspension and nanocomposite.
    Ahn SY; Song YS
    Carbohydr Polym; 2016 Oct; 151():119-129. PubMed ID: 27474550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rheological behavior of cellulose nanowhisker suspension under magnetic field.
    Kim DH; Song YS
    Carbohydr Polym; 2015 Aug; 126():240-7. PubMed ID: 25933545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entangled and colloidally stable microcrystalline cellulose matrices in controlled drug release.
    Dong Y; Paukkonen H; Fang W; Kontturi E; Laaksonen T; Laaksonen P
    Int J Pharm; 2018 Sep; 548(1):113-119. PubMed ID: 29920312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in research on natural cellulosic fibre modifications by polyelectrolytes.
    Sun Z; Zhang X; Wang X; Liang S; Li N; An H
    Carbohydr Polym; 2022 Feb; 278():118966. PubMed ID: 34973781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheological parameters of saliva in comparison with taste examination.
    Marcinkowska-Gapińska A; Linkowska-Świdzińska K; Świdziński T; Surdacka A
    Biorheology; 2018; 55(1):51-60. PubMed ID: 30530953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological influence of cellulose nanoparticles (CNs) from cottonseed hulls on rheological properties of polyvinyl alcohol/CN suspensions.
    Zhou L; He H; Li MC; Song K; Cheng HN; Wu Q
    Carbohydr Polym; 2016 Nov; 153():445-454. PubMed ID: 27561516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of fibre dimension and charge density on nanocellulose gels.
    Mendoza L; Gunawardhana T; Batchelor W; Garnier G
    J Colloid Interface Sci; 2018 Sep; 525():119-125. PubMed ID: 29689416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rheological properties of sulfoacetate derivatives of cellulose.
    Chauvelon G; Doublier JL; Buléon A; Thibault JF; Saulnier L
    Carbohydr Res; 2003 Apr; 338(8):751-9. PubMed ID: 12668095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.