These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 29362819)

  • 1. A comparison of group sequential and fixed sample size designs for bioequivalence trials with highly variable drugs.
    Knahl SIE; Lang B; Fleischer F; Kieser M
    Eur J Clin Pharmacol; 2018 May; 74(5):549-559. PubMed ID: 29362819
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-stage designs versus European scaled average designs in bioequivalence studies for highly variable drugs: Which to choose?
    Molins E; Cobo E; Ocaña J
    Stat Med; 2017 Dec; 36(30):4777-4788. PubMed ID: 28853164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling the type I error rate in two-stage sequential adaptive designs when testing for average bioequivalence.
    Maurer W; Jones B; Chen Y
    Stat Med; 2018 May; 37(10):1587-1607. PubMed ID: 29462835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the upper sample size limit in two-stage bioequivalence designs.
    Karalis V
    Int J Pharm; 2013 Nov; 456(1):87-94. PubMed ID: 23954235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-stage designs for cross-over bioequivalence trials.
    Kieser M; Rauch G
    Stat Med; 2015 Jul; 34(16):2403-16. PubMed ID: 25809815
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-stage designs in bioequivalence trials.
    Schütz H
    Eur J Clin Pharmacol; 2015 Mar; 71(3):271-81. PubMed ID: 25604509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of bioequivalence for highly variable drugs with scaled average bioequivalence.
    Tothfalusi L; Endrenyi L; Arieta AG
    Clin Pharmacokinet; 2009; 48(11):725-43. PubMed ID: 19817502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inflation of Type I Error in the Evaluation of Scaled Average Bioequivalence, and a Method for its Control.
    Labes D; Schütz H
    Pharm Res; 2016 Nov; 33(11):2805-14. PubMed ID: 27480875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal adaptive sequential designs for crossover bioequivalence studies.
    Xu J; Audet C; DiLiberti CE; Hauck WW; Montague TH; Parr AF; Potvin D; Schuirmann DJ
    Pharm Stat; 2016; 15(1):15-27. PubMed ID: 26538182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Testing for bioequivalence of highly variable drugs from TR-RT crossover designs with heterogeneous residual variances.
    Kang Q; Vahl CI
    Pharm Stat; 2017 Sep; 16(5):361-377. PubMed ID: 28620937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential design approaches for bioequivalence studies with crossover designs.
    Potvin D; DiLiberti CE; Hauck WW; Parr AF; Schuirmann DJ; Smith RA
    Pharm Stat; 2008; 7(4):245-62. PubMed ID: 17710740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of the reference scaled bioequivalence semi-replicate method with other approaches: focus on human exposure to drugs.
    Karalis V; Symillides M; Macheras P
    Eur J Pharm Sci; 2009 Aug; 38(1):55-63. PubMed ID: 19524039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling type 1 error rate for sequential, bioequivalence studies with crossover designs.
    Rasmussen HE; Ma R; Wang JJ
    Pharm Stat; 2019 Jan; 18(1):96-105. PubMed ID: 30370634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inflation of the type I error: investigations on regulatory recommendations for bioequivalence of highly variable drugs.
    Wonnemann M; Frömke C; Koch A
    Pharm Res; 2015 Jan; 32(1):135-43. PubMed ID: 25033764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-traditional study designs to demonstrate average bioequivalence for highly variable drug products.
    Patterson SD; Zariffa NM; Montague TH; Howland K
    Eur J Clin Pharmacol; 2001 Nov; 57(9):663-70. PubMed ID: 11791897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Group sequential extensions of a standard bioequivalence testing procedure.
    Gould AL
    J Pharmacokinet Biopharm; 1995 Feb; 23(1):57-86. PubMed ID: 8576845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of Bayesian and frequentist group-sequential clinical trial designs.
    Stallard N; Todd S; Ryan EG; Gates S
    BMC Med Res Methodol; 2020 Jan; 20(1):4. PubMed ID: 31910813
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scaled average bioequivalence methods for highly variable drugs: Leveling-off soft limits and the EMA's 2010 guideline (some ways to improve its type I error control).
    Muñoz J; Ocaña J; Suárez R; Millapán C
    Stat Med; 2024 Mar; 43(7):1475-1488. PubMed ID: 38316492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical methodology for highly variable compounds: A novel design approach for the ofatumumab Phase 2 bioequivalence study.
    Jones B; Li B; Bagger M; Goodyear A; Ludwig I
    Pharm Stat; 2022 Nov; 21(6):1357-1365. PubMed ID: 35604539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alternative confidence intervals for the assessment of bioequivalence in four-period cross-over designs.
    Quiroz J; Ting N; Wei GC; Burdick RK
    Stat Med; 2002 Jul; 21(13):1825-47. PubMed ID: 12111892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.