BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 29362830)

  • 1. Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
    Ma F; Xu J; Li X; Wang P; Wang B; Liu B
    Exp Brain Res; 2018 Mar; 236(3):907-918. PubMed ID: 29362830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural interactions in occipitotemporal cortex during basic human movement perception by dynamic causal modeling.
    Gu J; Liu B; Sun X; Ma F; Li X
    Brain Imaging Behav; 2021 Feb; 15(1):231-243. PubMed ID: 32141031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced activation in the extrastriate body area by goal-directed actions.
    Takahashi H; Shibuya T; Kato M; Sassa T; Koeda M; Yahata N; Suhara T; Okubo Y
    Psychiatry Clin Neurosci; 2008 Apr; 62(2):214-9. PubMed ID: 18412845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct neural mechanisms for body form and body motion discriminations.
    Vangeneugden J; Peelen MV; Tadin D; Battelli L
    J Neurosci; 2014 Jan; 34(2):574-85. PubMed ID: 24403156
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of motion in the neural representation of social interactions in the posterior temporal cortex.
    Landsiedel J; Daughters K; Downing PE; Koldewyn K
    Neuroimage; 2022 Nov; 262():119533. PubMed ID: 35931309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human cortical regions activated by wide-field visual motion: an H2(15)O PET study.
    Cheng K; Fujita H; Kanno I; Miura S; Tanaka K
    J Neurophysiol; 1995 Jul; 74(1):413-27. PubMed ID: 7472342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding facial expressions based on face-selective and motion-sensitive areas.
    Liang Y; Liu B; Xu J; Zhang G; Li X; Wang P; Wang B
    Hum Brain Mapp; 2017 Jun; 38(6):3113-3125. PubMed ID: 28345150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain correlates of recognition of communicative interactions from biological motion in schizophrenia.
    Okruszek Ł; Wordecha M; Jarkiewicz M; Kossowski B; Lee J; Marchewka A
    Psychol Med; 2018 Aug; 48(11):1862-1871. PubMed ID: 29173243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.
    Jastorff J; Orban GA
    J Neurosci; 2009 Jun; 29(22):7315-29. PubMed ID: 19494153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency.
    Kontaris I; Wiggett AJ; Downing PE
    Neuropsychologia; 2009 Dec; 47(14):3118-24. PubMed ID: 19643118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of kinematics in cortical regions for continuous human motion perception.
    McAleer P; Pollick FE; Love SA; Crabbe F; Zacks JM
    Cogn Affect Behav Neurosci; 2014 Mar; 14(1):307-18. PubMed ID: 23943513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis.
    Downing PE; Wiggett AJ; Peelen MV
    J Neurosci; 2007 Jan; 27(1):226-33. PubMed ID: 17202490
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Moving Toward versus Away from Another: How Body Motion Direction Changes the Representation of Bodies and Actions in the Visual Cortex.
    Bellot E; Abassi E; Papeo L
    Cereb Cortex; 2021 Mar; 31(5):2670-2685. PubMed ID: 33401307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoding the direction of auditory motion in blind humans.
    Wolbers T; Zahorik P; Giudice NA
    Neuroimage; 2011 May; 56(2):681-7. PubMed ID: 20451630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Form and motion make independent contributions to the response to biological motion in occipitotemporal cortex.
    Thompson JC; Baccus W
    Neuroimage; 2012 Jan; 59(1):625-34. PubMed ID: 21839175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neural substrates underlying the passive observation and active control of translational egomotion.
    Huang RS; Chen CF; Sereno MI
    J Neurosci; 2015 Mar; 35(10):4258-67. PubMed ID: 25762672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional deficits in the extrastriate body area during observation of sports-related actions in schizophrenia.
    Takahashi H; Kato M; Sassa T; Shibuya T; Koeda M; Yahata N; Matsuura M; Asai K; Suhara T; Okubo Y
    Schizophr Bull; 2010 May; 36(3):642-7. PubMed ID: 18927345
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential coding of eye/hand motor actions in the human ventral occipito-temporal cortex.
    Tosoni A; Guidotti R; Del Gratta C; Committeri G; Sestieri C
    Neuropsychologia; 2016 Dec; 93(Pt A):116-127. PubMed ID: 27756696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel networks operating across attentional deployment and motion processing: a multi-seed partial least squares fMRI study.
    Caplan JB; Luks TL; Simpson GV; Glaholt M; McIntosh AR
    Neuroimage; 2006 Feb; 29(4):1192-202. PubMed ID: 16236528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals.
    Matteau I; Kupers R; Ricciardi E; Pietrini P; Ptito M
    Brain Res Bull; 2010 Jul; 82(5-6):264-70. PubMed ID: 20466041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.