BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 29362851)

  • 1. A near-infrared fluorescent sensor with large Stokes shift for rapid and highly selective detection of thiophenols in water samples and living cells.
    Zeng R; Gao Q; Cheng F; Yang Y; Zhang P; Chen S; Yang H; Chen J; Long Y
    Anal Bioanal Chem; 2018 Mar; 410(7):2001-2009. PubMed ID: 29362851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells.
    Yu D; Huang F; Ding S; Feng G
    Anal Chem; 2014 Sep; 86(17):8835-41. PubMed ID: 25102423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and Synthesis of a Fluorescent Probe with a Large Stokes Shift for Detecting Thiophenols and Its Application in Water Samples and Living Cells.
    Liu H; Guo C; Guo S; Wang L; Shi D
    Molecules; 2019 Jan; 24(2):. PubMed ID: 30669672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient two-photon fluorescent probe with red emission for imaging of thiophenols in living cells and tissues.
    Liu HW; Zhang XB; Zhang J; Wang QQ; Hu XX; Wang P; Tan W
    Anal Chem; 2015 Sep; 87(17):8896-903. PubMed ID: 26228351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A rhodamine-based fluorescent probe for colorimetric and fluorescence lighting-up determination of toxic thiophenols in environmental water and living cells.
    Wu J; Ye Z; Wu F; Wang H; Zeng L; Bao GM
    Talanta; 2018 May; 181():239-247. PubMed ID: 29426507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A colorimetric and turn-on NIR fluorescent probe based on xanthene system for sensitive detection of thiophenol and its application in bioimaging.
    Guo SH; Leng TH; Wang K; Wang CY; Shen YJ; Zhu WH
    Talanta; 2018 Aug; 185():359-364. PubMed ID: 29759212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A coumarin-based fluorescent probe for selective and sensitive detection of thiophenols and its application.
    Li J; Zhang CF; Yang SH; Yang WC; Yang GF
    Anal Chem; 2014 Mar; 86(6):3037-42. PubMed ID: 24506518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast responsive chromogenic and near-infrared fluorescence lighting-up probe for visual detection of toxic thiophenol in environmental water and living cells.
    Wu J; Su D; Qin C; Li W; Rodrigues J; Sheng R; Zeng L
    Talanta; 2019 Aug; 201():111-118. PubMed ID: 31122400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Merocyanine-based turn-on fluorescent probe for the sensitive and selective determination of thiophenols via a pK
    Zhang S; Wang Q; Wu F; Yang J; Cheng T; Yang XF; Li Z; Li H
    Talanta; 2020 Aug; 216():120965. PubMed ID: 32456924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new double-emission fluorescent probe for fast detection of thiophenols in aqueous solution and living cells.
    Lv W; Chen Y; Bian L; Chen X
    Talanta; 2019 May; 197():204-210. PubMed ID: 30771925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curcumin-Based "Enhanced S
    Yue Y; Huo F; Zhang Y; Chao J; Martínez-Máñez R; Yin C
    Anal Chem; 2016 Nov; 88(21):10499-10503. PubMed ID: 27690389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive fluorescent probe based on a novel phenothiazine dye for detection of thiophenols in real water samples and living cells.
    Hou P; Wang J; Fu S; Liu L; Chen S
    Anal Bioanal Chem; 2019 Feb; 411(4):935-942. PubMed ID: 30535528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quinolinium-based fluorescent probes for the detection of thiophenols in environmental samples and living cells.
    Liu XL; Duan XY; Du XJ; Song QH
    Chem Asian J; 2012 Nov; 7(11):2696-702. PubMed ID: 22969047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dual-Site and Dual-Excitation Fluorescent Probe That Can Be Tuned for Discriminative Detection of Cysteine, Homocystein, and Thiophenols.
    Yang Y; Feng Y; Qiu F; Iqbal K; Wang Y; Song X; Wang Y; Zhang G; Liu W
    Anal Chem; 2018 Dec; 90(23):14048-14055. PubMed ID: 30398324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel isophorone-based red-emitting/NIR probe for thiophenol and its application in real water sample and vivo.
    Cheng Y; Ma F; Gu X; Liu Z; Zhang X; Xue T; Zheng Y; Qi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():281-288. PubMed ID: 30466034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dual-response near-infrared fluorescent probe for rapid detecting thiophenol and its application in water samples and bio-imaging.
    Li Y; Su W; Zhou Z; Huang Z; Wu C; Yin P; Li H; Zhang Y
    Talanta; 2019 Jul; 199():355-360. PubMed ID: 30952270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction-based fluorescent probe for selective discrimination of thiophenols over aliphaticthiols and its application in water samples.
    Wang Z; Han DM; Jia WP; Zhou QZ; Deng WP
    Anal Chem; 2012 Jun; 84(11):4915-20. PubMed ID: 22536992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A large stokes shift fluorescent probe for sensing of thiophenols based on imidazo[1,5-α]pyridine in both aqueous medium and living cells.
    Chen S; Li H; Hou P
    Anal Chim Acta; 2017 Nov; 993():63-70. PubMed ID: 29078956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel triphenylamine-based fluorescent chemo-sensors for fast detection of thiophenols in vitro and in vivo.
    Duan Y; Ding G; Yao M; Wang Q; Guo H; Wang X; Zhang Y; Li J; Li X; Qin X
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118348. PubMed ID: 32334384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new fluorescence turn-on probe for biothiols based on photoinduced electron transfer and its application in living cells.
    Wang J; Zhou C; Zhang J; Zhu X; Liu X; Wang Q; Zhang H
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Sep; 166():31-37. PubMed ID: 27203232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.