These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 29362987)

  • 1. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.
    Moghaddasi L; Bezak E
    Australas Phys Eng Sci Med; 2018 Mar; 41(1):129-141. PubMed ID: 29362987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.
    Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A
    Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The neutron sensitivity of dosimeters applied to boron neutron capture therapy.
    Raaijmakers CP; Watkins PR; Nottelman EL; Verhagen HW; Jansen JT; Zoetelief J; Mijnheer BJ
    Med Phys; 1996 Sep; 23(9):1581-9. PubMed ID: 8892256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis on the emission and potential application of Cherenkov radiation in boron neutron capture therapy: A Monte Carlo simulation study.
    Shu DY; Geng CR; Tang XB; Gong CH; Shao WC; Ai Y
    Appl Radiat Isot; 2018 Jul; 137():219-224. PubMed ID: 29655128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feasibility study of optical imaging of the boron-dose distribution by a liquid scintillator in a clinical boron neutron capture therapy field.
    Maeda H; Nohtomi A; Hu N; Kakino R; Akita K; Ono K
    Med Phys; 2024 Jan; 51(1):509-521. PubMed ID: 37672219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design for an accelerator-based orthogonal epithermal neutron beam for boron neutron capture therapy.
    Allen DA; Beynon TD; Green S
    Med Phys; 1999 Jan; 26(1):71-6. PubMed ID: 9949400
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prompt gamma ray detection and imaging for boron neutron capture therapy using CdTe detector and novel detector shield - Monte Carlo study.
    Moktan H; Lee CL; Cho SH
    Med Phys; 2023 Mar; 50(3):1736-1745. PubMed ID: 36625477
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of dose rate scaling factors used in NCTPlan treatment planning code for the BNCT beam of THOR.
    Hsu FY; Liu MT; Tung CJ; Hsueh Liu YW; Chang CC; Liu HM; Chou FI
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S130-3. PubMed ID: 19375926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.
    Hsieh M; Liu Y; Mostafaei F; Poulson JM; Nie LH
    Med Phys; 2017 Feb; 44(2):637-643. PubMed ID: 28205309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2015 Feb; 96():45-51. PubMed ID: 25479433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron neutron capture therapy (BNCT): implications of neutron beam and boron compound characteristics.
    Wheeler FJ; Nigg DW; Capala J; Watkins PR; Vroegindeweij C; Auterinen I; Seppälä T; Bleuel D
    Med Phys; 1999 Jul; 26(7):1237-44. PubMed ID: 10435523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of dose planning calculations for boron neutron capture therapy using cylindrical and anthropomorphic phantoms.
    Koivunoro H; Seppälä T; Uusi-Simola J; Merimaa K; Kotiluoto P; Serén T; Kortesniemi M; Auterinen I; Savolainen S
    Phys Med Biol; 2010 Jun; 55(12):3515-33. PubMed ID: 20508317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a final design for the Birmingham boron neutron capture therapy neutron beam.
    Allen DA; Beynon TD; Green S; James ND
    Med Phys; 1999 Jan; 26(1):77-82. PubMed ID: 9949401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accelerator driven neutron source design via beryllium target and
    Khorshidi A
    J Cancer Res Ther; 2017; 13(3):456-465. PubMed ID: 28862209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field.
    Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S
    Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a dose distribution shifter to fit inside the collimator of a Boron Neutron Capture Therapy irradiation system to treat superficial tumours.
    Hu N; Tanaka H; Yoshikawa S; Miyao M; Akita K; Aihara T; Ono K
    Phys Med; 2021 Feb; 82():17-24. PubMed ID: 33548793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Feasibility study on epithermal neutron field for cyclotron-based boron neutron capture therapy.
    Yonai S; Aoki T; Nakamura T; Yashima H; Baba M; Yokobori H; Tahara Y
    Med Phys; 2003 Aug; 30(8):2021-30. PubMed ID: 12945968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the eptihermal neutron energy limit for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT): Study and impact of new energy limits.
    Hervé M; Sauzet N; Santos D
    Phys Med; 2021 Aug; 88():148-157. PubMed ID: 34265549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phantom materials for boron neutron capture therapy.
    Raaijmakers CP; Nottelman EL; Mijnheer BJ
    Phys Med Biol; 2000 Aug; 45(8):2353-61. PubMed ID: 10958199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.