These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

653 related articles for article (PubMed ID: 29363426)

  • 41. Network-based approaches in drug discovery and early development.
    Harrold JM; Ramanathan M; Mager DE
    Clin Pharmacol Ther; 2013 Dec; 94(6):651-8. PubMed ID: 24025802
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Two-stage flux balance analysis of metabolic networks for drug target identification.
    Li Z; Wang RS; Zhang XS
    BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S11. PubMed ID: 21689470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Target control of linear directed networks based on the path cover problem.
    Someya W; Akutsu T; Nacher JC
    Sci Rep; 2024 Jul; 14(1):16881. PubMed ID: 39043768
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying Drug-Target Interactions with Decision Templates.
    Yan XY; Zhang SW
    Curr Protein Pept Sci; 2018; 19(5):498-506. PubMed ID: 27829344
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MODA: an efficient algorithm for network motif discovery in biological networks.
    Omidi S; Schreiber F; Masoudi-Nejad A
    Genes Genet Syst; 2009 Oct; 84(5):385-95. PubMed ID: 20154426
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Knowledge-fused differential dependency network models for detecting significant rewiring in biological networks.
    Tian Y; Zhang B; Hoffman EP; Clarke R; Zhang Z; Shih IeM; Xuan J; Herrington DM; Wang Y
    BMC Syst Biol; 2014 Jul; 8():87. PubMed ID: 25055984
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Identification of important nodes in directed biological networks: a network motif approach.
    Wang P; Lü J; Yu X
    PLoS One; 2014; 9(8):e106132. PubMed ID: 25170616
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Computational methods for identifying the critical nodes in biological networks.
    Liu X; Hong Z; Liu J; Lin Y; Rodríguez-Patón A; Zou Q; Zeng X
    Brief Bioinform; 2020 Mar; 21(2):486-497. PubMed ID: 30753282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic Network Reconstructions to Predict Drug Targets and Off-Target Effects.
    Rawls K; Dougherty BV; Papin J
    Methods Mol Biol; 2020; 2088():315-330. PubMed ID: 31893380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Global optimization in systems biology: stochastic methods and their applications.
    Balsa-Canto E; Banga JR; Egea JA; Fernandez-Villaverde A; de Hijas-Liste GM
    Adv Exp Med Biol; 2012; 736():409-24. PubMed ID: 22161343
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational modeling of biochemical networks using COPASI.
    Mendes P; Hoops S; Sahle S; Gauges R; Dada J; Kummer U
    Methods Mol Biol; 2009; 500():17-59. PubMed ID: 19399433
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optimal in silico target gene deletion through nonlinear programming for genetic engineering.
    Hong CC; Song M
    PLoS One; 2010 Feb; 5(2):e9331. PubMed ID: 20195367
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NIHBA: a network interdiction approach for metabolic engineering design.
    Jiang S; Wang Y; Kaiser M; Krasnogor N
    Bioinformatics; 2020 Jun; 36(11):3482-3492. PubMed ID: 32167529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Identification of Drug Targets in Breast Cancer Metabolic Network.
    Kanhaiya K; Tyagi-Tiwari D
    J Comput Biol; 2020 Jun; 27(6):975-986. PubMed ID: 31573323
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Network-based technologies for early drug discovery.
    Fotis C; Antoranz A; Hatziavramidis D; Sakellaropoulos T; Alexopoulos LG
    Drug Discov Today; 2018 Mar; 23(3):626-635. PubMed ID: 29294361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Causal Reasoning on Boolean Control Networks Based on Abduction: Theory and Application to Cancer Drug Discovery.
    Biane C; Delaplace F
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(5):1574-1585. PubMed ID: 30582550
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Systems biology approaches and tools for analysis of interactomes and multi-target drugs.
    Schrattenholz A; Groebe K; Soskic V
    Methods Mol Biol; 2010; 662():29-58. PubMed ID: 20824465
    [TBL] [Abstract][Full Text] [Related]  

  • 58. DLDTI: a learning-based framework for drug-target interaction identification using neural networks and network representation.
    Zhao Y; Zheng K; Guan B; Guo M; Song L; Gao J; Qu H; Wang Y; Shi D; Zhang Y
    J Transl Med; 2020 Nov; 18(1):434. PubMed ID: 33187537
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Computational methods to identify new antibacterial targets.
    McPhillie MJ; Cain RM; Narramore S; Fishwick CW; Simmons KJ
    Chem Biol Drug Des; 2015 Jan; 85(1):22-9. PubMed ID: 24974974
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Control of fluxes in metabolic networks.
    Basler G; Nikoloski Z; Larhlimi A; Barabási AL; Liu YY
    Genome Res; 2016 Jul; 26(7):956-68. PubMed ID: 27197218
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.