These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 29363709)

  • 1. Stretching and compression of DNA by external forces under nanochannel confinement.
    Bleha T; Cifra P
    Soft Matter; 2018 Feb; 14(7):1247-1259. PubMed ID: 29363709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compression and Stretching of Single DNA Molecules under Channel Confinement.
    Bleha T; Cifra P
    J Phys Chem B; 2020 Mar; 124(9):1691-1702. PubMed ID: 32045238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Scaling regimes of a semiflexible polymer in a rectangular channel.
    Werner E; Mehlig B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):050601. PubMed ID: 26066107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compression and free expansion of single DNA molecules in nanochannels.
    Reccius CH; Mannion JT; Cross JD; Craighead HG
    Phys Rev Lett; 2005 Dec; 95(26):268101. PubMed ID: 16486410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A nanofluidic device for real-time visualization of DNA-protein interactions on the single DNA molecule level.
    Öz R; Kk S; Westerlund F
    Nanoscale; 2019 Jan; 11(4):2071-2078. PubMed ID: 30644945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimensional reduction of duplex DNA under confinement to nanofluidic slits.
    Vargas-Lara F; Stavis SM; Strychalski EA; Nablo BJ; Geist J; Starr FW; Douglas JF
    Soft Matter; 2015 Nov; 11(42):8273-84. PubMed ID: 26353028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persistence length of DNA molecules confined in nanochannels.
    Cifra P; Benková Z; Bleha T
    Phys Chem Chem Phys; 2010 Aug; 12(31):8934-42. PubMed ID: 20589298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Confinement-induced entropic recoil of single DNA molecules in a nanofluidic structure.
    Turner SW; Cabodi M; Craighead HG
    Phys Rev Lett; 2002 Mar; 88(12):128103. PubMed ID: 11909505
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directly Accessible and Transferrable Nanofluidic Systems for Biomolecule Manipulation.
    Kim YS; Dincau BM; Kwon YT; Kim JH; Yeo WH
    ACS Sens; 2019 May; 4(5):1417-1423. PubMed ID: 31062586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stretching of surface-tethered polymers in pressure-driven flow under confinement.
    Roy T; Szuttor K; Smiatek J; Holm C; Hardt S
    Soft Matter; 2017 Sep; 13(36):6189-6196. PubMed ID: 28798968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nanofluidic knot factory based on compression of single DNA in nanochannels.
    Amin S; Khorshid A; Zeng L; Zimny P; Reisner W
    Nat Commun; 2018 Apr; 9(1):1506. PubMed ID: 29666466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuneable elastomeric nanochannels for nanofluidic manipulation.
    Huh D; Mills KL; Zhu X; Burns MA; Thouless MD; Takayama S
    Nat Mater; 2007 Jun; 6(6):424-8. PubMed ID: 17486084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bandpass filtering of DNA elastic modes using confinement and tension.
    Lin J; Persson F; Fritzsche J; Tegenfeldt JO; Saleh OA
    Biophys J; 2012 Jan; 102(1):96-100. PubMed ID: 22225802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of excluded volume on the force-extension of wormlike chains in slit confinement.
    Li X; Dorfman KD
    J Chem Phys; 2016 Mar; 144(10):104902. PubMed ID: 26979704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of a stripe and slab confinement for ring and linear macromolecules in nanochannel.
    Benková Z; Námer P; Cifra P
    Soft Matter; 2016 Oct; 12(40):8425-8439. PubMed ID: 27722460
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of nanofluidic biochips with nanochannels for applications in DNA analysis.
    Xia D; Yan J; Hou S
    Small; 2012 Sep; 8(18):2787-801. PubMed ID: 22778064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unfolding DNA condensates produced by DNA-like charged depletants: A force spectroscopy study.
    Lima CH; Rocha MS; Ramos EB
    J Chem Phys; 2017 Feb; 146(5):054901. PubMed ID: 28178815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extension of DNA in a nanochannel as a rod-to-coil transition.
    Tree DR; Wang Y; Dorfman KD
    Phys Rev Lett; 2013 May; 110(20):208103. PubMed ID: 25167455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interplay between chain stiffness and excluded volume of semiflexible polymers confined in nanochannels.
    Muralidhar A; Tree DR; Wang Y; Dorfman KD
    J Chem Phys; 2014 Feb; 140(8):084905. PubMed ID: 24588196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the Relative Flexibility of RNA and DNA Duplexes: Stretching and Twist-Stretch Coupling.
    Bao L; Zhang X; Shi YZ; Wu YY; Tan ZJ
    Biophys J; 2017 Mar; 112(6):1094-1104. PubMed ID: 28355538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.