These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 29363828)

  • 21. Electrospun natural polymer and its composite nanofibrous scaffolds for nerve tissue engineering.
    Zha F; Chen W; Zhang L; Yu D
    J Biomater Sci Polym Ed; 2020 Mar; 31(4):519-548. PubMed ID: 31774364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Augmented physical, mechanical, and cellular responsiveness of gelatin-aldehyde modified xanthan hydrogel through incorporation of silicon nanoparticles for bone tissue engineering.
    Aghajanzadeh MS; Imani R; Nazarpak MH; McInnes SJP
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129231. PubMed ID: 38185310
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Free-Standing Hierarchically Porous Silica Nanoparticle Superstructures: Bridging the Nano- to Microscale for Tailorable Delivery of Small and Large Therapeutics.
    Palvai S; Kpeglo D; Newham G; Peyman SA; Evans SD; Ong ZY
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5568-5581. PubMed ID: 38270578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering.
    Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C
    ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of Nanofibrous Matrices, Three-Dimensional Scaffolds, and Microspheres: From Theory to Practice.
    Ma C; Liu X
    Tissue Eng Part C Methods; 2017 Jan; 23(1):50-59. PubMed ID: 27923327
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and Characterization of Core-Shell Nanofibers Using a Next-Generation Airbrush for Biomedical Applications.
    Singh R; Ahmed F; Polley P; Giri J
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):41924-41934. PubMed ID: 30433758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers.
    Gongalsky MB; Kharin AY; Osminkina LA; Timoshenko VY; Jeong J; Lee H; Chung BH
    Nanoscale Res Lett; 2012 Aug; 7(1):446. PubMed ID: 22873790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration.
    Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of electrospun poly(D,L lactide-co-glycolide)80/20 scaffolds loaded with diclofenac sodium for tissue engineering.
    Nikkola L; Morton T; Balmayor ER; Jukola H; Harlin A; Redl H; van Griensven M; Ashammakhi N
    Eur J Med Res; 2015 Jun; 20(1):54. PubMed ID: 26044589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma.
    Luo M; Lewik G; Ratcliffe JC; Choi CHJ; Mäkilä E; Tong WY; Voelcker NH
    ACS Appl Mater Interfaces; 2019 Sep; 11(37):33637-33649. PubMed ID: 31433156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Luminescent Porous Silicon Nanoparticles for Continuous Wave and Time-Gated Photoluminescence Imaging.
    Kumeria T; Qu Z; Popat A; Altalhi T; Santos A
    Methods Mol Biol; 2019; 2054():185-198. PubMed ID: 31482457
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Temperature-responsive PCL-PLLA nanofibrous tissue engineering scaffolds with memorized porous microstructure recovery.
    Woodbury SM; Swanson WB; Douglas L; Niemann D; Mishina Y
    Front Dent Med; 2023; 4():. PubMed ID: 38606037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Incorporation of aligned PCL-PEG nanofibers into porous chitosan scaffolds improved the orientation of collagen fibers in regenerated periodontium.
    Jiang W; Li L; Zhang D; Huang S; Jing Z; Wu Y; Zhao Z; Zhao L; Zhou S
    Acta Biomater; 2015 Oct; 25():240-52. PubMed ID: 26188325
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of poly (mannitol sebacate)/poly (lactic acid) nanofibrous scaffolds with potential applications in tissue engineering.
    Rahmani M; Khani MM; Rabbani S; Mashaghi A; Noorizadeh F; Faridi-Majidi R; Ghanbari H
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110626. PubMed ID: 32204067
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Porous silicon-poly(ε-caprolactone) film composites: evaluation of drug release and degradation behavior.
    Bodiford NK; McInnes SJP; Voelcker NH; Coffer JL
    Biomed Microdevices; 2018 Aug; 20(3):71. PubMed ID: 30097808
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanobioengineered electrospun composite nanofibers and osteoblasts for bone regeneration.
    Venugopal JR; Low S; Choon AT; Kumar AB; Ramakrishna S
    Artif Organs; 2008 May; 32(5):388-97. PubMed ID: 18471168
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Raman and fluorescence micro-spectroscopy applied for the monitoring of sunitinib-loaded porous silicon nanocontainers in cardiac cells.
    Tolstik E; Gongalsky MB; Dierks J; Brand T; Pernecker M; Pervushin NV; Maksutova DE; Gonchar KA; Samsonova JV; Kopeina G; Sivakov V; Osminkina LA; Lorenz K
    Front Pharmacol; 2022; 13():962763. PubMed ID: 36016563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of electrospun nanofiber scaffold by short wave length ultraviolet radiation treatment and its potential applications in tissue engineering.
    Yixiang D; Yong T; Liao S; Chan CK; Ramakrishna S
    Tissue Eng Part A; 2008 Aug; 14(8):1321-9. PubMed ID: 18466068
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(L-lactic acid) nanocylinders as nanofibrous structures for macroporous gelatin scaffolds.
    Lee JB; Jeong SI; Bae MS; Heo DN; Heo JS; Hwang YS; Lee HW; Kwon IK
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6371-6. PubMed ID: 22121718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.