BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 29363857)

  • 1. Influence of human acute wound fluid on the antibacterial efficacy of different antiseptic polyurethane foam dressings: An in vitro analysis.
    Rembe JD; Fromm-Dornieden C; Böhm J; Stuermer EK
    Wound Repair Regen; 2018 Jan; 26(1):27-35. PubMed ID: 29363857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial properties of antiseptic-impregnated biological dressings.
    Kearney JN; Arain T; Holland KT
    J Hosp Infect; 1988 Jan; 11(1):68-76. PubMed ID: 2895140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of a bi-layer wound dressing for burn care. II. In vitro and in vivo bactericidal properties.
    Martineau L; Shek PN
    Burns; 2006 Mar; 32(2):172-9. PubMed ID: 16455202
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative evaluation of silver-containing antimicrobial dressings and drugs.
    Castellano JJ; Shafii SM; Ko F; Donate G; Wright TE; Mannari RJ; Payne WG; Smith DJ; Robson MC
    Int Wound J; 2007 Jun; 4(2):114-22. PubMed ID: 17651227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro prevention and inactivation of biofilms using controlled-release iodine foam dressings for wound healing.
    Watson F; Chen R; Percival SL
    Int Wound J; 2024 Jan; 21(1):e14365. PubMed ID: 37715349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antimicrobial Nonisocyanate Polyurethane Foam Derived from Lignin for Wound Healing.
    Li J; Xu X; Ma X; Cui M; Wang X; Chen J; Zhu J; Chen J
    ACS Appl Bio Mater; 2024 Feb; 7(2):1301-1310. PubMed ID: 38305746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vitro Efficacy of Bacterial Cellulose Dressings Chemisorbed with Antiseptics against Biofilm Formed by Pathogens Isolated from Chronic Wounds.
    Dydak K; Junka A; Dydak A; Brożyna M; Paleczny J; Fijalkowski K; Kubielas G; Aniołek O; Bartoszewicz M
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33924416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple in vitro model to test the efficacy of antimicrobial agents released from dressings.
    Grzybowski J; Antos M; Trafny EA
    J Pharmacol Toxicol Methods; 1996 Oct; 36(2):73-6. PubMed ID: 8912224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing antibacterial efficacy of a polyhexanide hydrogel versus alginate-based wound dressing in burns.
    De Decker I; Janssens D; De Mey K; Hoeksema H; Simaey M; De Coninck P; Verbelen J; De Pessemier A; Blondeel P; Monstrey S; Claes KE
    J Wound Care; 2024 May; 33(5):335-347. PubMed ID: 38683776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified in-vitro AATCC-100 procedure to measure viable bacteria from wound dressings.
    Lee SH; Glover T; Lavey N; Fu X; Donohue M; Karunasena E
    PLoS One; 2024; 19(3):e0298829. PubMed ID: 38512908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocrystalline silver dressings as an efficient anti-MRSA barrier: a new solution to an increasing problem.
    Strohal R; Schelling M; Takacs M; Jurecka W; Gruber U; Offner F
    J Hosp Infect; 2005 Jul; 60(3):226-30. PubMed ID: 15896880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro assessment of chlorhexidine gluconate-impregnated polyurethane foam antimicrobial dressing using zone of inhibition assays.
    Bhende S; Spangler D
    Infect Control Hosp Epidemiol; 2004 Aug; 25(8):664-7. PubMed ID: 15357158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antimicrobial activity of silver-containing dressings on wound microorganisms using an in vitro biofilm model.
    Percival SL; Bowler PG; Dolman J
    Int Wound J; 2007 Jun; 4(2):186-91. PubMed ID: 17651233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An in vitro study of antimicrobial activity and efficacy of iodine-generating hydrogel dressings.
    Thorn RM; Greenman J; Austin A
    J Wound Care; 2006 Jul; 15(7):305-10. PubMed ID: 16869198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of chitosan bandage to prevent fatal infections developing from highly contaminated wounds in mice.
    Burkatovskaya M; Tegos GP; Swietlik E; Demidova TN; P Castano A; Hamblin MR
    Biomaterials; 2006 Aug; 27(22):4157-64. PubMed ID: 16616364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local environment of chronic wounds under synthetic dressings.
    Varghese MC; Balin AK; Carter DM; Caldwell D
    Arch Dermatol; 1986 Jan; 122(1):52-7. PubMed ID: 3079991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antimicrobial properties of silver-containing wound dressings: a microcalorimetric study.
    O'Neill MA; Vine GJ; Beezer AE; Bishop AH; Hadgraft J; Labetoulle C; Walker M; Bowler PG
    Int J Pharm; 2003 Sep; 263(1-2):61-8. PubMed ID: 12954181
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Film dressings from Thai mango seed kernel extracts versus nanocrystalline silver dressings in antibacterial properties.
    Hasatsri S; Jantrapanukorn B
    J Pharm Pharm Sci; 2024; 27():12674. PubMed ID: 38606395
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro diffusion bed, 3-day repeat challenge 'capacity' test for antimicrobial wound dressings.
    Greenman J; Thorn RM; Saad S; Austin AJ
    Int Wound J; 2006 Dec; 3(4):322-9. PubMed ID: 17199767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The disinfection of silicone-foam dressings.
    Evans BK; Harding KG; Marks J; Ribeiro CD
    J Clin Hosp Pharm; 1985 Sep; 10(3):289-95. PubMed ID: 3934212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.