BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 29364070)

  • 41. Disruption of left-right reciprocal coupling in the spinal cord of larval lamprey abolishes brain-initiated locomotor activity.
    Jackson AW; Horinek DF; Boyd MR; McClellan AD
    J Neurophysiol; 2005 Sep; 94(3):2031-44. PubMed ID: 16000521
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of strychnine on fictive swimming in the lamprey: evidence for glycinergic inhibition, discrepancies with model predictions, and novel modulatory rhythms.
    McPherson DR; Buchanan JT; Kasicki S
    J Comp Physiol A; 1994 Sep; 175(3):311-21. PubMed ID: 7932300
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The CPGs for Limbed Locomotion-Facts and Fiction.
    Grillner S; Kozlov A
    Int J Mol Sci; 2021 May; 22(11):. PubMed ID: 34070932
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Entrainment of the spinal pattern generators for swimming by mechano-sensitive elements in the lamprey spinal cord in vitro.
    Grillner S; McClellan A; Perret C
    Brain Res; 1981 Aug; 217(2):380-6. PubMed ID: 7248795
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of putative excitatory amino acid neurotransmitters in the initiation of locomotion in the lamprey spinal cord. I. The effects of excitatory amino acid antagonists.
    Brodin L; Grillner S
    Brain Res; 1985 Dec; 360(1-2):139-48. PubMed ID: 2866822
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Endogenous activation of glycine and NMDA receptors in lamprey spinal cord during fictive locomotion.
    Alford S; Williams TL
    J Neurosci; 1989 Aug; 9(8):2792-800. PubMed ID: 2549218
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rostral versus caudal differences in mechanical entrainment of the lamprey central pattern generator for locomotion.
    Tytell ED; Cohen AH
    J Neurophysiol; 2008 May; 99(5):2408-19. PubMed ID: 18256165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Descending control of turning locomotor activity in larval lamprey: neurophysiology and computer modeling.
    McClellan AD; Hagevik A
    J Neurophysiol; 1997 Jul; 78(1):214-28. PubMed ID: 9242275
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord.
    Matsushima T; Grillner S
    J Neurophysiol; 1992 Feb; 67(2):373-88. PubMed ID: 1569465
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Lateral turns in the Lamprey. II. Activity of reticulospinal neurons during the generation of fictive turns.
    Fagerstedt P; Orlovsky GN; Deliagina TG; Grillner S; Ullén F
    J Neurophysiol; 2001 Nov; 86(5):2257-65. PubMed ID: 11698516
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Spino-bulbar neurons convey information to the brainstem about different phases of the locomotor cycle in the lamprey.
    Vinay L; Grillner S
    Brain Res; 1992 Jun; 582(1):134-8. PubMed ID: 1323370
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord.
    Harris-Warrick RM; Cohen AH
    J Exp Biol; 1985 May; 116():27-46. PubMed ID: 4056654
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modifications of locomotor pattern underlying escape behavior in the lamprey.
    Islam SS; Zelenin PV
    J Neurophysiol; 2008 Jan; 99(1):297-307. PubMed ID: 18003880
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in electrophysiological properties of lamprey spinal motoneurons during fictive swimming.
    Martin MM
    J Neurophysiol; 2002 Nov; 88(5):2463-76. PubMed ID: 12424286
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bending the lamprey spinal cord causes a slowly-decaying increase in the frequency of fictive swimming.
    Kiemel T; Cohen AH
    Brain Res; 2001 May; 900(1):57-64. PubMed ID: 11325346
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Activities of spinal neurons during brain stem-dependent fictive swimming in lamprey.
    Buchanan JT; Kasicki S
    J Neurophysiol; 1995 Jan; 73(1):80-7. PubMed ID: 7714592
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Strychnine eliminates alternating motor output during fictive locomotion in the lamprey.
    Cohen AH; Harris-Warrick RM
    Brain Res; 1984 Feb; 293(1):164-7. PubMed ID: 6704713
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The roles of spinal interneurons and motoneurons in the lamprey locomotor network.
    Buchanan JT
    Prog Brain Res; 1999; 123():311-21. PubMed ID: 10635726
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The spino-reticulo-spinal loop can slow down the NMDA-activated spinal locomotor network in lamprey.
    Vinay L; Grillner S
    Neuroreport; 1993 Jun; 4(6):609-12. PubMed ID: 8394151
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase-dependent effects of spinal cord stimulation on locomotor activity.
    Vogelstein RJ; Etienne-Cummings R; Thakor NV; Cohen AH
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):257-65. PubMed ID: 17009484
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.