These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 29364125)

  • 1. Touchable Computing: Computing-Inspired Bio-Detection.
    Chen Y; Shi S; Yao X; Nakano T
    IEEE Trans Nanobioscience; 2017 Dec; 16(8):810-821. PubMed ID: 29364125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NGA-Inspired Nanorobots-Assisted Detection of Multifocal Cancer.
    Shi S; Chen Y; Yao X
    IEEE Trans Cybern; 2022 May; 52(5):2787-2797. PubMed ID: 33055049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosensing by Learning: Cancer Detection as Iterative optimization.
    Chen Y; Sharifi N; Holmes G; Cheang UK
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1837-1840. PubMed ID: 30440753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanorobots-Assisted Natural Computation for Multifocal Tumor Sensitization and Targeting.
    Shi S; Yan Y; Xiong J; Cheang UK; Yao X; Chen Y
    IEEE Trans Nanobioscience; 2021 Apr; 20(2):154-165. PubMed ID: 33270565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling Contrast-Imaging-Assisted Optimal Targeted Drug Delivery: A Touchable Communication Channel Estimation and Waveform Design Perspective.
    Chen Y; Zhou Y; Murch R; Kosmas P
    IEEE Trans Nanobioscience; 2017 Apr; 16(3):203-215. PubMed ID: 28212092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overcoming Channel Uncertainties in Touchable Molecular Communication for Direct-Drug-Targeting-Assisted Immuno-Chemotherapy.
    Sharifi N; Zhou Y; Holmes G; Chen Y
    IEEE Trans Nanobioscience; 2020 Apr; 19(2):249-258. PubMed ID: 31841419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tension-Relaxation In Vivo Computing Principle for Tumor Sensitization and Targeting.
    Shi S; Sharifi N; Chen Y; Yao X
    IEEE Trans Cybern; 2022 Sep; 52(9):9145-9156. PubMed ID: 33600339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moving-Distance-Minimized PSO for Mobile Robot Swarm.
    Zhang J; Lu Y; Che L; Zhou M
    IEEE Trans Cybern; 2022 Sep; 52(9):9871-9881. PubMed ID: 34437078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latticed Channel Model of Touchable Communication Over Capillary Microcirculation Network.
    Zhou Y; Chen Y
    IEEE Trans Nanobioscience; 2019 Oct; 18(4):669-678. PubMed ID: 31562098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle swarm optimization with composite particles in dynamic environments.
    Liu L; Yang S; Wang D
    IEEE Trans Syst Man Cybern B Cybern; 2010 Dec; 40(6):1634-48. PubMed ID: 20371407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nature-Inspired Algorithm for Training Multilayer Perceptron Networks in e-health Environments for High-Risk Pregnancy Care.
    Moreira MWL; Rodrigues JJPC; Kumar N; Al-Muhtadi J; Korotaev V
    J Med Syst; 2018 Feb; 42(3):51. PubMed ID: 29392487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Acoustic Communication Technique of Nanorobot Swarms for Nanomedicine Applications.
    Loscrí V; Vegni AM
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):598-607. PubMed ID: 25898028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Many-Objective Quantum-Inspired Particle Swarm Optimization Algorithm for Placement of Virtual Machines in Smart Computing Cloud.
    Balicki J
    Entropy (Basel); 2021 Dec; 24(1):. PubMed ID: 35052084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data.
    Ye F
    PLoS One; 2017; 12(12):e0188746. PubMed ID: 29236718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scatter learning particle swarm optimization algorithm for multimodal problems.
    Ren Z; Zhang A; Wen C; Feng Z
    IEEE Trans Cybern; 2014 Jul; 44(7):1127-40. PubMed ID: 24108491
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phase Response Design of Recursive All-Pass Digital Filters Using a Modified PSO Algorithm.
    Chang WD
    Comput Intell Neurosci; 2015; 2015():638068. PubMed ID: 26366168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entropy-Based Diversification Approach for Bio-Computing Methods.
    Olivares R; Soto R; Crawford B; Riquelme F; Munoz R; Ríos V; Cabrera R; Castro C
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Software Reliability using Bio Inspired Soft Computing Techniques.
    Diwaker C; Tomar P; Poonia RC; Singh V
    J Med Syst; 2018 Apr; 42(5):93. PubMed ID: 29637392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosensing-by-Learning Direct Targeting Strategy for Enhanced Tumor Sensitization.
    Chen Y; Ali M; Shi S; Cheang UK
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):498-509. PubMed ID: 31144640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous localization of multiple tumors from thermogram of tissue phantom by using a novel optimization algorithm inspired by hunting dogs.
    Salman Lari SM; Mojra A; Rokni M
    Comput Biol Med; 2019 Sep; 112():103377. PubMed ID: 31400540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.