These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1341 related articles for article (PubMed ID: 29364163)

  • 1. Incorporation of Immune Checkpoint Blockade into Chimeric Antigen Receptor T Cells (CAR-Ts): Combination or Built-In CAR-T.
    Yoon DH; Osborn MJ; Tolar J; Kim CJ
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29364163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Cancer Immunotherapy by Chimeric Antigen Receptor-Modified T Cells Engineered to Secrete Checkpoint Inhibitors.
    Li S; Siriwon N; Zhang X; Yang S; Jin T; He F; Kim YJ; Mac J; Lu Z; Wang S; Han X; Wang P
    Clin Cancer Res; 2017 Nov; 23(22):6982-6992. PubMed ID: 28912137
    [No Abstract]   [Full Text] [Related]  

  • 3. Immuno-oncologic Approaches: CAR-T Cells and Checkpoint Inhibitors.
    Gay F; D'Agostino M; Giaccone L; Genuardi M; Festuccia M; Boccadoro M; Bruno B
    Clin Lymphoma Myeloma Leuk; 2017 Aug; 17(8):471-478. PubMed ID: 28689001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immune Cell Hacking: Challenges and Clinical Approaches to Create Smarter Generations of Chimeric Antigen Receptor T Cells.
    Elahi R; Khosh E; Tahmasebi S; Esmaeilzadeh A
    Front Immunol; 2018; 9():1717. PubMed ID: 30108584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hurdles of CAR-T cell-based cancer immunotherapy directed against solid tumors.
    Zhang BL; Qin DY; Mo ZM; Li Y; Wei W; Wang YS; Wang W; Wei YQ
    Sci China Life Sci; 2016 Apr; 59(4):340-8. PubMed ID: 26965525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adoptive therapy with CAR redirected T cells for hematological malignancies.
    Li S; Yang Z; Shen J; Shan J; Qian C
    Sci China Life Sci; 2016 Apr; 59(4):370-8. PubMed ID: 27009302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paving New Roads for CARs.
    Hyrenius-Wittsten A; Roybal KT
    Trends Cancer; 2019 Oct; 5(10):583-592. PubMed ID: 31706506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Going viral: chimeric antigen receptor T-cell therapy for hematological malignancies.
    Gill S; June CH
    Immunol Rev; 2015 Jan; 263(1):68-89. PubMed ID: 25510272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells.
    Zolov SN; Rietberg SP; Bonifant CL
    Cytotherapy; 2018 Oct; 20(10):1259-1266. PubMed ID: 30309710
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immune checkpoint blockade: Releasing the brake towards hematological malignancies.
    Xia Y; Medeiros LJ; Young KH
    Blood Rev; 2016 May; 30(3):189-200. PubMed ID: 26699946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Checkpoint Inhibitors and Cytokines in Adoptive Cell-Based Cancer Immunotherapy with Genetically Modified T Cells.
    Gershovich PM; Karabelskii AV; Ulitin AB; Ivanov RA
    Biochemistry (Mosc); 2019 Jul; 84(7):695-710. PubMed ID: 31509722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perspectives on Chimeric Antigen Receptor T-Cell Immunotherapy for Solid Tumors.
    Kosti P; Maher J; Arnold JN
    Front Immunol; 2018; 9():1104. PubMed ID: 29872437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination Immunotherapy with CAR T Cells and Checkpoint Blockade for the Treatment of Solid Tumors.
    Grosser R; Cherkassky L; Chintala N; Adusumilli PS
    Cancer Cell; 2019 Nov; 36(5):471-482. PubMed ID: 31715131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CAR T Cell Therapy of Non-hematopoietic Malignancies: Detours on the Road to Clinical Success.
    Long KB; Young RM; Boesteanu AC; Davis MM; Melenhorst JJ; Lacey SF; DeGaramo DA; Levine BL; Fraietta JA
    Front Immunol; 2018; 9():2740. PubMed ID: 30559740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adoptive immunotherapy for hematological malignancies: Current status and new insights in chimeric antigen receptor T cells.
    Allegra A; Innao V; Gerace D; Vaddinelli D; Musolino C
    Blood Cells Mol Dis; 2016 Nov; 62():49-63. PubMed ID: 27865176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies.
    Song W; Zhang M
    Clin Immunol; 2020 May; 214():108382. PubMed ID: 32169439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CAR T Cells Administered in Combination with Lymphodepletion and PD-1 Inhibition to Patients with Neuroblastoma.
    Heczey A; Louis CU; Savoldo B; Dakhova O; Durett A; Grilley B; Liu H; Wu MF; Mei Z; Gee A; Mehta B; Zhang H; Mahmood N; Tashiro H; Heslop HE; Dotti G; Rooney CM; Brenner MK
    Mol Ther; 2017 Sep; 25(9):2214-2224. PubMed ID: 28602436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synergistic immunotherapeutic impact of engineered CAR-T cells with PD-1 blockade in lymphomas and solid tumors: a systematic review.
    Satapathy BP; Sheoran P; Yadav R; Chettri D; Sonowal D; Dash CP; Dhaka P; Uttam V; Yadav R; Jain M; Jain A
    Front Immunol; 2024; 15():1389971. PubMed ID: 38799440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells.
    Rupp LJ; Schumann K; Roybal KT; Gate RE; Ye CJ; Lim WA; Marson A
    Sci Rep; 2017 Apr; 7(1):737. PubMed ID: 28389661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors.
    Zhang E; Gu J; Xu H
    Mol Cancer; 2018 Jan; 17(1):7. PubMed ID: 29329591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 68.