BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 29364202)

  • 1. Ultrathin Porated Elastic Hydrogels As a Biomimetic Basement Membrane for Dual Cell Culture.
    Pellowe AS; Lauridsen HM; Matta R; Gonzalez AL
    J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers.
    Lauridsen HM; Gonzalez AL
    PLoS One; 2017; 12(2):e0171386. PubMed ID: 28234918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures.
    Almany L; Seliktar D
    Biomaterials; 2005 May; 26(15):2467-77. PubMed ID: 15585249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic macroporous PEG hydrogels as 3D scaffolds for the multiplication of human hematopoietic stem and progenitor cells.
    Raic A; Rödling L; Kalbacher H; Lee-Thedieck C
    Biomaterials; 2014 Jan; 35(3):929-40. PubMed ID: 24176196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes.
    Santhanam S; Liang J; Struckhoff J; Hamilton PD; Ravi N
    Acta Biomater; 2016 Oct; 43():327-337. PubMed ID: 27481290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and synthesis of biomimetic hydrogel scaffolds with controlled organization of cyclic RGD peptides.
    Zhu J; Tang C; Kottke-Marchant K; Marchant RE
    Bioconjug Chem; 2009 Feb; 20(2):333-9. PubMed ID: 19191566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment.
    Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO
    Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecularly engineered PEG hydrogels: a novel model system for proteolytically mediated cell migration.
    Raeber GP; Lutolf MP; Hubbell JA
    Biophys J; 2005 Aug; 89(2):1374-88. PubMed ID: 15923238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.
    Curley JL; Jennings SR; Moore MJ
    J Vis Exp; 2011 Feb; (48):. PubMed ID: 21372777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of epidermal growth factor on fibroblast migration through biomimetic hydrogels.
    Gobin AS; West JL
    Biotechnol Prog; 2003; 19(6):1781-5. PubMed ID: 14656156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Poly(ethylene glycol)-crosslinked gelatin hydrogel substrates with conjugated bioactive peptides influence endothelial cell behavior.
    Su J; Satchell SC; Wertheim JA; Shah RN
    Biomaterials; 2019 May; 201():99-112. PubMed ID: 30807988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional biomimetic patterning in hydrogels to guide cellular organization.
    Culver JC; Hoffmann JC; Poché RA; Slater JH; West JL; Dickinson ME
    Adv Mater; 2012 May; 24(17):2344-8. PubMed ID: 22467256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel hydrogels as supports for in vitro cell growth: poly(ethylene glycol)- and gelatine-based (meth)acrylamidopeptide macromonomers.
    Zimmermann J; Bittner K; Stark B; Mülhaupt R
    Biomaterials; 2002 May; 23(10):2127-34. PubMed ID: 11962653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Patterning Bioactive Proteins or Peptides on Hydrogel Using Photochemistry for Biological Applications.
    Dorsey TB; Grath A; Xu C; Hong Y; Dai G
    J Vis Exp; 2017 Sep; (127):. PubMed ID: 28994764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3-Dimensional spatially organized PEG-based hydrogels for an aortic valve co-culture model.
    Puperi DS; Balaoing LR; O'Connell RW; West JL; Grande-Allen KJ
    Biomaterials; 2015 Oct; 67():354-64. PubMed ID: 26241755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture.
    Liu Y; Chan-Park MB
    Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemically and topographically engineered poly(ethylene glycol) diacrylate hydrogels with biomimetic characteristics as substrates for human corneal epithelial cells.
    Yañez-Soto B; Liliensiek SJ; Murphy CJ; Nealey PF
    J Biomed Mater Res A; 2013 Apr; 101(4):1184-94. PubMed ID: 23255502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endothelial cell response to chemical, biological, and physical cues in bioactive hydrogels.
    Browning MB; Guiza V; Russell B; Rivera J; Cereceres S; Höök M; Hahn MS; Cosgriff-Hernandez EM
    Tissue Eng Part A; 2014 Dec; 20(23-24):3130-41. PubMed ID: 24935249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-gradient enabled ultrafast biomimetic snapping of hydrogel materials.
    Fan W; Shan C; Guo H; Sang J; Wang R; Zheng R; Sui K; Nie Z
    Sci Adv; 2019 Apr; 5(4):eaav7174. PubMed ID: 31016242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.