These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 29364204)
1. Melt Electrospinning Writing of Three-dimensional Poly(ε-caprolactone) Scaffolds with Controllable Morphologies for Tissue Engineering Applications. Wunner FM; Bas O; Saidy NT; Dalton PD; Pardo EMD; Hutmacher DW J Vis Exp; 2017 Dec; (130):. PubMed ID: 29364204 [TBL] [Abstract][Full Text] [Related]
2. Melt Electrospinning Writing of Poly-Hydroxymethylglycolide-co-ε-Caprolactone-Based Scaffolds for Cardiac Tissue Engineering. Castilho M; Feyen D; Flandes-Iparraguirre M; Hochleitner G; Groll J; Doevendans PAF; Vermonden T; Ito K; Sluijter JPG; Malda J Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28699224 [TBL] [Abstract][Full Text] [Related]
3. Additive Manufacturing of a Photo-Cross-Linkable Polymer via Direct Melt Electrospinning Writing for Producing High Strength Structures. Chen F; Hochleitner G; Woodfield T; Groll J; Dalton PD; Amsden BG Biomacromolecules; 2016 Jan; 17(1):208-14. PubMed ID: 26620885 [TBL] [Abstract][Full Text] [Related]
4. Melt electrospinning of poly(ε-caprolactone) scaffolds: phenomenological observations associated with collection and direct writing. Brown TD; Edin F; Detta N; Skelton AD; Hutmacher DW; Dalton PD Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():698-708. PubMed ID: 25491879 [TBL] [Abstract][Full Text] [Related]
5. Production of Scaffolds Using Melt Electrospinning Writing and Cell Seeding. Bolle ECL; Nicdao D; Dalton PD; Dargaville TR Methods Mol Biol; 2021; 2147():111-124. PubMed ID: 32840814 [TBL] [Abstract][Full Text] [Related]
11. Melt electrowriting of a biocompatible photo-crosslinkable poly(D,L-lactic acid)/poly(ε-caprolactone)-based material with tunable mechanical and functionalization properties. Darroch C; Asaro GA; Gréant C; Suku M; Pien N; van Vlierberghe S; Monaghan MG J Biomed Mater Res A; 2023 Jun; 111(6):851-862. PubMed ID: 36951312 [TBL] [Abstract][Full Text] [Related]
13. Additive manufacturing of polymer melts for implantable medical devices and scaffolds. Youssef A; Hollister SJ; Dalton PD Biofabrication; 2017 Feb; 9(1):012002. PubMed ID: 28245199 [TBL] [Abstract][Full Text] [Related]
14. Fabrication and in vitro evaluation of PCL/gelatin hierarchical scaffolds based on melt electrospinning writing and solution electrospinning for bone regeneration. Wang Z; Wang H; Xiong J; Li J; Miao X; Lan X; Liu X; Wang W; Cai N; Tang Y Mater Sci Eng C Mater Biol Appl; 2021 Sep; 128():112287. PubMed ID: 34474838 [TBL] [Abstract][Full Text] [Related]
15. High-Throughput Manufacture of 3D Fiber Scaffolds for Regenerative Medicine. Shirwaiker RA; Fisher MB; Anderson B; Schuchard KG; Warren PB; Maze B; Grondin P; Ligler FS; Pourdeyhimi B Tissue Eng Part C Methods; 2020 Jul; 26(7):364-374. PubMed ID: 32552453 [TBL] [Abstract][Full Text] [Related]
16. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering. Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443 [TBL] [Abstract][Full Text] [Related]
17. Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering. Cardoso GB; Machado-Silva AB; Sabino M; Santos AR; Zavaglia CA Biomatter; 2014; 4():. PubMed ID: 25093398 [TBL] [Abstract][Full Text] [Related]
18. Biocompatibility, alignment degree and mechanical properties of an electrospun chitosan-P(LLA-CL) fibrous scaffold. Chen F; Su Y; Mo X; He C; Wang H; Ikada Y J Biomater Sci Polym Ed; 2009; 20(14):2117-28. PubMed ID: 19874681 [TBL] [Abstract][Full Text] [Related]
19. Use of lecithin to control fiber morphology in electrospun poly (ɛ-caprolactone) scaffolds for improved tissue engineering applications. Coverdale BDM; Gough JE; Sampson WW; Hoyland JA J Biomed Mater Res A; 2017 Oct; 105(10):2865-2874. PubMed ID: 28608414 [TBL] [Abstract][Full Text] [Related]