These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 29364222)

  • 21. Creating Sub-50 Nm Nanofluidic Junctions in PDMS Microfluidic Chip via Self-Assembly Process of Colloidal Particles.
    Wei X; Syed A; Mao P; Han J; Song YA
    J Vis Exp; 2016 Mar; (109):. PubMed ID: 27023724
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of multilayer-PDMS based microfluidic device for bio-particles concentration detection.
    Masrie M; Majlis BY; Yunas J
    Biomed Mater Eng; 2014; 24(6):1951-8. PubMed ID: 25226891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-plasma bonding of PDMS for inexpensive fabrication of microfluidic devices.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Cotman C; Jeon NL
    J Vis Exp; 2007; (9):410. PubMed ID: 18989450
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PDMS-glass bonding using grafted polymeric adhesive--alternative process flow for compatibility with patterned biological molecules.
    Beh CW; Zhou W; Wang TH
    Lab Chip; 2012 Oct; 12(20):4120-7. PubMed ID: 22858861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. One-step in-mould modification of PDMS surfaces and its application in the fabrication of self-driven microfluidic channels.
    Fatona A; Chen Y; Reid M; Brook MA; Moran-Mirabal JM
    Lab Chip; 2015 Nov; 15(22):4322-30. PubMed ID: 26400365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dual-wavelength fluorescent detection of particles on a novel microfluidic chip.
    Jiang H; Weng X; Li D
    Lab Chip; 2013 Mar; 13(5):843-50. PubMed ID: 23291857
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Benchtop micromolding of polystyrene by soft lithography.
    Wang Y; Balowski J; Phillips C; Phillips R; Sims CE; Allbritton NL
    Lab Chip; 2011 Sep; 11(18):3089-97. PubMed ID: 21811715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid prototyping of PDMS devices using SU-8 lithography.
    Jenkins G
    Methods Mol Biol; 2013; 949():153-68. PubMed ID: 23329442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Facile and cost-effective production of microscale PDMS architectures using a combined micromilling-replica moulding (μMi-REM) technique.
    Carugo D; Lee JY; Pora A; Browning RJ; Capretto L; Nastruzzi C; Stride E
    Biomed Microdevices; 2016 Feb; 18(1):4. PubMed ID: 26747434
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PDMS-based porous membrane for medical applications: design, development, and fabrication.
    Keshtiban MM; Zand MM; Ebadi A; Azizi Z
    Biomed Mater; 2023 May; 18(4):. PubMed ID: 36808922
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polybetaine modification of PDMS microfluidic devices to resist thrombus formation in whole blood.
    Zhang Z; Borenstein J; Guiney L; Miller R; Sukavaneshvar S; Loose C
    Lab Chip; 2013 May; 13(10):1963-8. PubMed ID: 23563730
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface modification of PDMS microfluidic devices by controlled sulfuric acid treatment and the application in chip electrophoresis.
    Gitlin L; Schulze P; Ohla S; Bongard HJ; Belder D
    Electrophoresis; 2015 Feb; 36(3):449-56. PubMed ID: 25257973
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Surface modification for PDMS-based microfluidic devices.
    Zhou J; Khodakov DA; Ellis AV; Voelcker NH
    Electrophoresis; 2012 Jan; 33(1):89-104. PubMed ID: 22128067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IR-Compatible PDMS microfluidic devices for monitoring of enzyme kinetics.
    Srisa-Art M; Noblitt SD; Krummel AT; Henry CS
    Anal Chim Acta; 2018 Aug; 1021():95-102. PubMed ID: 29681289
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices.
    Khnouf R; Karasneh D; Albiss BA
    Electrophoresis; 2016 Feb; 37(3):529-35. PubMed ID: 26534833
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imprint Molding of a Microfluidic Optical Cell on Thermoplastics with Reduced Surface Roughness for the Detection of Copper Ions.
    Wu J; Lee NY
    Anal Sci; 2016; 32(1):85-92. PubMed ID: 26753711
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional patterning of PDMS microfluidic devices using integrated chemo-masks.
    Romanowsky MB; Heymann M; Abate AR; Krummel AT; Fraden S; Weitz DA
    Lab Chip; 2010 Jun; 10(12):1521-4. PubMed ID: 20454730
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.
    Gautam GP; Burger T; Wilcox A; Cumbo MJ; Graves SW; Piyasena ME
    Anal Bioanal Chem; 2018 May; 410(14):3385-3394. PubMed ID: 29651523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Long-Term Growth of Moss in Microfluidic Devices Enables Subcellular Studies in Development.
    Bascom CS; Wu SZ; Nelson K; Oakey J; Bezanilla M
    Plant Physiol; 2016 Sep; 172(1):28-37. PubMed ID: 27406170
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.