These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 29364222)

  • 41. Silica-on-silicon waveguide integrated polydimethylsiloxane lab-on-a-chip for quantum dot fluorescence bio-detection.
    Ozhikandathil J; Packirisamy M
    J Biomed Opt; 2012 Jan; 17(1):017006. PubMed ID: 22352672
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rapid automatic creation of monodisperse emulsion droplets by microfluidic device with degassed PDMS slab as a detachable suction actuator.
    Murata Y; Nakashoji Y; Kondo M; Tanaka Y; Hashimoto M
    Electrophoresis; 2018 Feb; 39(3):504-511. PubMed ID: 28815723
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control and automation of multilayered integrated microfluidic device fabrication.
    Kipper S; Frolov L; Guy O; Pellach M; Glick Y; Malichi A; Knisbacher BA; Barbiro-Michaely E; Avrahami D; Yavets-Chen Y; Levanon EY; Gerber D
    Lab Chip; 2017 Jan; 17(3):557-566. PubMed ID: 28102868
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Flow-through functionalized PDMS microfluidic channels with dextran derivative for ELISAs.
    Yu L; Li CM; Liu Y; Gao J; Wang W; Gan Y
    Lab Chip; 2009 May; 9(9):1243-7. PubMed ID: 19370243
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lab-on-chip methodologies for the study of transport in porous media: energy applications.
    Berejnov V; Djilali N; Sinton D
    Lab Chip; 2008 May; 8(5):689-93. PubMed ID: 18432337
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. One-Step Approach to Fabricating Polydimethylsiloxane Microfluidic Channels of Different Geometric Sections by Sequential Wet Etching Processes.
    Wang CK; Liao WH; Wu HM; Tung YC
    J Vis Exp; 2018 Sep; (139):. PubMed ID: 30272670
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A plasmonic gold nanofilm-based microfluidic chip for rapid and inexpensive droplet-based photonic PCR.
    Jalili A; Bagheri M; Shamloo A; Kazemipour Ashkezari AH
    Sci Rep; 2021 Dec; 11(1):23338. PubMed ID: 34857792
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A simple method for patterning poly(dimethylsiloxane) barriers in paper using contact-printing with low-cost rubber stamps.
    Dornelas KL; Dossi N; Piccin E
    Anal Chim Acta; 2015 Feb; 858():82-90. PubMed ID: 25597806
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A simple method for preparation of macroporous polydimethylsiloxane membrane for microfluidic chip-based isoelectric focusing applications.
    Ou J; Ren CL; Pawliszyn J
    Anal Chim Acta; 2010 Mar; 662(2):200-5. PubMed ID: 20171320
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Desktop aligner for fabrication of multilayer microfluidic devices.
    Li X; Yu ZT; Geraldo D; Weng S; Alve N; Dun W; Kini A; Patel K; Shu R; Zhang F; Li G; Jin Q; Fu J
    Rev Sci Instrum; 2015 Jul; 86(7):075008. PubMed ID: 26233409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tape underlayment rotary-node (TURN) valves for simple on-chip microfluidic flow control.
    Markov DA; Manuel S; Shor LM; Opalenik SR; Wikswo JP; Samson PC
    Biomed Microdevices; 2010 Feb; 12(1):135-44. PubMed ID: 19859812
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The relationship between the Young's modulus and dry etching rate of polydimethylsiloxane (PDMS).
    Fitzgerald ML; Tsai S; Bellan LM; Sappington R; Xu Y; Li D
    Biomed Microdevices; 2019 Mar; 21(1):26. PubMed ID: 30826983
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells.
    Cho H; Kim J; Jeon CW; Han KH
    Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fabrication of a microfluidic device for the compartmentalization of neuron soma and axons.
    Harris J; Lee H; Vahidi B; Tu C; Cribbs D; Jeon NL; Cotman C
    J Vis Exp; 2007; (7):261. PubMed ID: 18989432
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessing reusability of microfluidic devices: Urinary protein uptake by PDMS-based channels after long-term cyclic use.
    Amin R; Li L; Tasoglu S
    Talanta; 2019 Jan; 192():455-462. PubMed ID: 30348417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Wettability control and patterning of PDMS using UV-ozone and water immersion.
    Ma K; Rivera J; Hirasaki GJ; Biswal SL
    J Colloid Interface Sci; 2011 Nov; 363(1):371-8. PubMed ID: 21840014
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chiral separation of FITC-labeled amino acids with gel electrochromatography using a polydimethylsiloxane microfluidic device.
    Zeng HL; Li H; Wang X; Lin JM
    J Capill Electrophor Microchip Technol; 2007; 10(1-2):19-24. PubMed ID: 17685238
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Microfluidic pneumatic logic circuits and digital pneumatic microprocessors for integrated microfluidic systems.
    Rhee M; Burns MA
    Lab Chip; 2009 Nov; 9(21):3131-43. PubMed ID: 19823730
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reversibly-bonded microfluidic devices for stable cell culture and rapid, gentle cell extraction.
    Feng X; Wu Z; Cheng LKW; Xiang Y; Sugimura R; Lin X; Wu AR
    Lab Chip; 2024 Jul; 24(14):3546-3555. PubMed ID: 38949063
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.