These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 29364222)

  • 61. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices.
    Halldorsson S; Lucumi E; Gómez-Sjöberg R; Fleming RMT
    Biosens Bioelectron; 2015 Jan; 63():218-231. PubMed ID: 25105943
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adhesive bonding strategies to fabricate high-strength and transparent 3D printed microfluidic device.
    Kecili S; Tekin HC
    Biomicrofluidics; 2020 Mar; 14(2):024113. PubMed ID: 32341724
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of four functional biocompatible pressure-sensitive adhesives for rapid prototyping of cell-based lab-on-a-chip and organ-on-a-chip systems.
    Kratz SRA; Eilenberger C; Schuller P; Bachmann B; Spitz S; Ertl P; Rothbauer M
    Sci Rep; 2019 Jun; 9(1):9287. PubMed ID: 31243326
    [TBL] [Abstract][Full Text] [Related]  

  • 64. PDMS compound adsorption in context.
    Li N; Schwartz M; Ionescu-Zanetti C
    J Biomol Screen; 2009 Feb; 14(2):194-202. PubMed ID: 19196703
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Formation of a polymer surface with a gradient of pore size using a microfluidic chip.
    Kreppenhofer K; Li J; Segura R; Popp L; Rossi M; Tzvetkova P; Luy B; Kähler CJ; Guber AE; Levkin PA
    Langmuir; 2013 Mar; 29(11):3797-804. PubMed ID: 23427850
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Polyurethane-based microfluidic devices for blood contacting applications.
    Wu WI; Sask KN; Brash JL; Selvaganapathy PR
    Lab Chip; 2012 Mar; 12(5):960-70. PubMed ID: 22273592
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biological implications of polydimethylsiloxane-based microfluidic cell culture.
    Regehr KJ; Domenech M; Koepsel JT; Carver KC; Ellison-Zelski SJ; Murphy WL; Schuler LA; Alarid ET; Beebe DJ
    Lab Chip; 2009 Aug; 9(15):2132-9. PubMed ID: 19606288
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Irreversible, direct bonding of nanoporous polymer membranes to PDMS or glass microdevices.
    Aran K; Sasso LA; Kamdar N; Zahn JD
    Lab Chip; 2010 Mar; 10(5):548-52. PubMed ID: 20162227
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A facile "liquid-molding" method to fabricate PDMS microdevices with 3-dimensional channel topography.
    Liu X; Wang Q; Qin J; Lin B
    Lab Chip; 2009 May; 9(9):1200-5. PubMed ID: 19370237
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical-PDMS binding kinetics and implications for bioavailability in microfluidic devices.
    Auner AW; Tasneem KM; Markov DA; McCawley LJ; Hutson MS
    Lab Chip; 2019 Feb; 19(5):864-874. PubMed ID: 30720811
    [TBL] [Abstract][Full Text] [Related]  

  • 72. High throughput microfluidic rapid and low cost prototyping packaging methods.
    Miled A; Sawan M
    J Vis Exp; 2013 Dec; (82):e50735. PubMed ID: 24378854
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Fabricating smooth PDMS microfluidic channels from low-resolution 3D printed molds using an omniphobic lubricant-infused coating.
    Villegas M; Cetinic Z; Shakeri A; Didar TF
    Anal Chim Acta; 2018 Feb; 1000():248-255. PubMed ID: 29289317
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mitigated reactive oxygen species generation leads to an improvement of cell proliferation on poly[glycidyl methacrylate-co-poly(ethylene glycol) methacrylate] functionalized polydimethylsiloxane surfaces.
    Yu L; Shi Z; Gao L; Li C
    J Biomed Mater Res A; 2015 Sep; 103(9):2987-97. PubMed ID: 25711883
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels.
    Sui G; Wang J; Lee CC; Lu W; Lee SP; Leyton JV; Wu AM; Tseng HR
    Anal Chem; 2006 Aug; 78(15):5543-51. PubMed ID: 16878894
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Roll-to-roll manufacturing of large surface area PDMS devices, and application to a microfluidic artificial lung.
    Zhang A; Tharwani K; Wang J; Seilo GK; Atie MA; Potkay JA
    Lab Chip; 2024 Sep; 24(18):4357-4370. PubMed ID: 39148312
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Roll-to-roll fabrication of integrated PDMS-paper microfluidics for nucleic acid amplification.
    Hiltunen J; Liedert C; Hiltunen M; Huttunen OH; Hiitola-Keinänen J; Aikio S; Harjanne M; Kurkinen M; Hakalahti L; Lee LP
    Lab Chip; 2018 May; 18(11):1552-1559. PubMed ID: 29708259
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A web-based application for automated quantification of chemical gradients induced in microfluidic devices.
    Cóndor M; Rüberg T; Borau C; Piles J; García-Aznar JM
    Comput Biol Med; 2018 Apr; 95():118-128. PubMed ID: 29494849
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Embellishment of microfluidic devices via femtosecond laser micronanofabrication for chip functionalization.
    Wang J; He Y; Xia H; Niu LG; Zhang R; Chen QD; Zhang YL; Li YF; Zeng SJ; Qin JH; Lin BC; Sun HB
    Lab Chip; 2010 Aug; 10(15):1993-6. PubMed ID: 20508876
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Imaging and characterizing fluid invasion in micro-3D printed porous devices with variable surface wettability.
    Li H; Zhang T
    Soft Matter; 2019 Sep; 15(35):6978-6987. PubMed ID: 31432880
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.