These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 29364296)

  • 1. Formation, growth and applications of femtoliter droplets on a microlens.
    Lei L; Li J; Yu H; Bao L; Peng S; Zhang X
    Phys Chem Chem Phys; 2018 Feb; 20(6):4226-4237. PubMed ID: 29364296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of Femtoliter Liquid on a Microlens: A Way to Flexible Dual-Microlens Arrays.
    Bao L; Pinchasik BE; Lei L; Xu Q; Hao H; Wang X; Zhang X
    ACS Appl Mater Interfaces; 2019 Jul; 11(30):27386-27393. PubMed ID: 31268287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large Scale Flow-Mediated Formation and Potential Applications of Surface Nanodroplets.
    Yu H; Peng S; Lei L; Zhang J; Greaves TL; Zhang X
    ACS Appl Mater Interfaces; 2016 Aug; 8(34):22679-87. PubMed ID: 27500306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling the Growth Modes of Femtoliter Sessile Droplets Nucleating on Chemically Patterned Surfaces.
    Bao L; Werbiuk Z; Lohse D; Zhang X
    J Phys Chem Lett; 2016 Mar; 7(6):1055-9. PubMed ID: 26938312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled addition of new liquid component into surface droplet arrays by solvent exchange.
    Li M; Yu H; Bao L; Dyett B; Zhang X
    J Colloid Interface Sci; 2019 May; 543():164-173. PubMed ID: 30802763
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Solution Composition on the Formation of Surface Nanodroplets by Solvent Exchange.
    Lu Z; Peng S; Zhang X
    Langmuir; 2016 Feb; 32(7):1700-6. PubMed ID: 26848886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwetting of pH-Sensitive Surface and Anisotropic MoS
    Lu Z; Lu Z; Peng S; Zhang X; Liu Q
    Langmuir; 2016 Nov; 32(43):11273-11279. PubMed ID: 27477439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Growth of nanodroplets on a still microfiber under flow conditions.
    Yu H; Rump M; Maheshwari S; Bao L; Zhang X
    Phys Chem Chem Phys; 2018 Jul; 20(27):18252-18261. PubMed ID: 29947379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flow-induced dissolution of femtoliter surface droplet arrays.
    Bao L; Spandan V; Yang Y; Dyett B; Verzicco R; Lohse D; Zhang X
    Lab Chip; 2018 Mar; 18(7):1066-1074. PubMed ID: 29487930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal.
    Li H; Aili A; Alhosani MH; Ge Q; Zhang T
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20910-20919. PubMed ID: 29792417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of microlens arrays by localized hydrolysis in water droplet microreactors.
    Liu J; Chang MJ; Ai Y; Zhang HL; Chen Y
    ACS Appl Mater Interfaces; 2013 Mar; 5(6):2214-9. PubMed ID: 23438343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.
    Wen R; Xu S; Zhao D; Lee YC; Ma X; Yang R
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44911-44921. PubMed ID: 29214806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of surface nanodroplets facing a structured microchannel wall.
    Yu H; Maheshwari S; Zhu J; Lohse D; Zhang X
    Lab Chip; 2017 Apr; 17(8):1496-1504. PubMed ID: 28345085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P; Maeda Y; Lv F; Takata Y; Orejon D
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):35391-35403. PubMed ID: 28925681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polyvinyl alcohol microlens array obtained by solvent evaporation from a confined droplet array.
    Yuan Y; Xu M; Wang X; Lu H; Qiu L
    Appl Opt; 2021 Dec; 60(35):10914-10919. PubMed ID: 35200853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of surface nanodroplets under controlled flow conditions.
    Zhang X; Lu Z; Tan H; Bao L; He Y; Sun C; Lohse D
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9253-7. PubMed ID: 26159418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collective interactions in the nucleation and growth of surface droplets.
    Xu C; Yu H; Peng S; Lu Z; Lei L; Lohse D; Zhang X
    Soft Matter; 2017 Feb; 13(5):937-944. PubMed ID: 28009910
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent Effects on the Formation of Surface Nanodroplets by Solvent Exchange.
    Lu Z; Xu H; Zeng H; Zhang X
    Langmuir; 2015 Nov; 31(44):12120-5. PubMed ID: 26488386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.