BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 29364519)

  • 21. Purification of Pluripotent Stem Cell-Derived Cardiomyocytes Using CRISPR/Cas9-Mediated Integration of Fluorescent Reporters.
    Galdos FX; Darsha AK; Paige SL; Wu SM
    Methods Mol Biol; 2021; 2158():223-240. PubMed ID: 32857377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Efficient genome editing in human pluripotent stem cells through CRISPR/Cas9].
    Liu GG; Li S; Wei YD; Zhang YX; Ding QR
    Yi Chuan; 2015 Nov; 37(11):1167-73. PubMed ID: 26582531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient bi-allelic tagging in human induced pluripotent stem cells using CRISPR.
    Ren X; Takagi MA; Shen Y
    STAR Protoc; 2023 Mar; 4(1):102084. PubMed ID: 36853689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Validation of CRISPR/Cas9 Systems for Targeted Gene Modification in Induced Pluripotent Stem Cells.
    Lee CM; Zhu H; Davis TH; Deshmukh H; Bao G
    Methods Mol Biol; 2017; 1498():3-21. PubMed ID: 27709565
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genome editing of hPSCs: Recent progress in hPSC-based disease modeling for understanding disease mechanisms.
    Choi DK; Kim YK; HoonYu J; Min SH; Park SW
    Prog Mol Biol Transl Sci; 2021; 181():271-287. PubMed ID: 34127196
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient homology-directed gene editing by CRISPR/Cas9 in human stem and primary cells using tube electroporation.
    Xu X; Gao D; Wang P; Chen J; Ruan J; Xu J; Xia X
    Sci Rep; 2018 Aug; 8(1):11649. PubMed ID: 30076383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human induced pluripotent stem cells and CRISPR/Cas-mediated targeted genome editing: Platforms to tackle sensorineural hearing loss.
    Stojkovic M; Han D; Jeong M; Stojkovic P; Stankovic KM
    Stem Cells; 2021 Jun; 39(6):673-696. PubMed ID: 33586253
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR-Cas9: a promising tool for gene editing on induced pluripotent stem cells.
    Kim EJ; Kang KH; Ju JH
    Korean J Intern Med; 2017 Jan; 32(1):42-61. PubMed ID: 28049282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CRISPR/Cas9-Directed Genome Editing of Cultured Cells.
    Yang L; Yang JL; Byrne S; Pan J; Church GM
    Curr Protoc Mol Biol; 2014 Jul; 107():31.1.1-31.1.17. PubMed ID: 24984853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of CRISPR/Cas9 to human-induced pluripotent stem cells: from gene editing to drug discovery.
    De Masi C; Spitalieri P; Murdocca M; Novelli G; Sangiuolo F
    Hum Genomics; 2020 Jun; 14(1):25. PubMed ID: 32591003
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Potential pitfalls of CRISPR/Cas9-mediated genome editing.
    Peng R; Lin G; Li J
    FEBS J; 2016 Apr; 283(7):1218-31. PubMed ID: 26535798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ectopic expression of RAD52 and dn53BP1 improves homology-directed repair during CRISPR-Cas9 genome editing.
    Paulsen BS; Mandal PK; Frock RL; Boyraz B; Yadav R; Upadhyayula S; Gutierrez-Martinez P; Ebina W; Fasth A; Kirchhausen T; Talkowski ME; Agarwal S; Alt FW; Rossi DJ
    Nat Biomed Eng; 2017 Nov; 1(11):878-888. PubMed ID: 31015609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conversion Tract Analysis of Homology-Directed Genome Editing Using Oligonucleotide Donors.
    Kan Y; Hendrickson EA
    Methods Mol Biol; 2019; 1999():131-144. PubMed ID: 31127573
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient, footprint-free human iPSC genome editing by consolidation of Cas9/CRISPR and piggyBac technologies.
    Wang G; Yang L; Grishin D; Rios X; Ye LY; Hu Y; Li K; Zhang D; Church GM; Pu WT
    Nat Protoc; 2017 Jan; 12(1):88-103. PubMed ID: 27929521
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Editing the Genome of Human Induced Pluripotent Stem Cells Using CRISPR/Cas9 Ribonucleoprotein Complexes.
    Bruntraeger M; Byrne M; Long K; Bassett AR
    Methods Mol Biol; 2019; 1961():153-183. PubMed ID: 30912046
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells.
    Vassena R; Heindryckx B; Peco R; Pennings G; Raya A; Sermon K; Veiga A
    Hum Reprod Update; 2016 Jun; 22(4):411-9. PubMed ID: 26932460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing.
    Miyaoka Y; Berman JR; Cooper SB; Mayerl SJ; Chan AH; Zhang B; Karlin-Neumann GA; Conklin BR
    Sci Rep; 2016 Mar; 6():23549. PubMed ID: 27030102
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH; Adikaram P; Pandey M; Genis A; Simonds WF
    Bioengineered; 2016 Apr; 7(3):166-74. PubMed ID: 27340770
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient introduction of an isogenic homozygous mutation to induced pluripotent stem cells from a hereditary hearing loss family using CRISPR/Cas9 and single-stranded donor oligonucleotides.
    Dong Y; Peng T; Wu W; Tan D; Liu X; Xie D
    J Int Med Res; 2019 Apr; 47(4):1717-1730. PubMed ID: 30819013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.