BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 29364519)

  • 41. Fluorescent Gene Tagging of Transcriptionally Silent Genes in hiPSCs.
    Roberts B; Hendershott MC; Arakaki J; Gerbin KA; Malik H; Nelson A; Gehring J; Hookway C; Ludmann SA; Yang R; Haupt A; Grancharova T; Valencia V; Fuqua MA; Tucker A; Rafelski SM; Gunawardane RN
    Stem Cell Reports; 2019 May; 12(5):1145-1158. PubMed ID: 30956114
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The protocol of tagging endogenous proteins with fluorescent tags using CRISPR-Cas9 genome editing.
    Wu ZS; Gao Y; Du YT; Dang S; He KM
    Yi Chuan; 2023 Feb; 45(2):165-175. PubMed ID: 36927663
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR/Cas9-Based Genome Editing for Disease Modeling and Therapy: Challenges and Opportunities for Nonviral Delivery.
    Wang HX; Li M; Lee CM; Chakraborty S; Kim HW; Bao G; Leong KW
    Chem Rev; 2017 Aug; 117(15):9874-9906. PubMed ID: 28640612
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gene Disruption Using CRISPR-Cas9 Technology.
    Hu N; Malek SN
    Methods Mol Biol; 2019; 1881():201-209. PubMed ID: 30350208
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR/Cas9-mediated correction of human genetic disease.
    Men K; Duan X; He Z; Yang Y; Yao S; Wei Y
    Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA.
    Richardson CD; Ray GJ; DeWitt MA; Curie GL; Corn JE
    Nat Biotechnol; 2016 Mar; 34(3):339-44. PubMed ID: 26789497
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 with improved proof-reading enhances homology-directed repair.
    Kato-Inui T; Takahashi G; Hsu S; Miyaoka Y
    Nucleic Acids Res; 2018 May; 46(9):4677-4688. PubMed ID: 29672770
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons.
    Überbacher C; Obergasteiger J; Volta M; Venezia S; Müller S; Pesce I; Pizzi S; Lamonaca G; Picard A; Cattelan G; Malpeli G; Zoli M; Beccano-Kelly D; Flynn R; Wade-Martins R; Pramstaller PP; Hicks AA; Cowley SA; Corti C
    Stem Cell Res; 2019 Dec; 41():101656. PubMed ID: 31733438
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Seamless genome editing in Drosophila by combining CRISPR/Cas9 and piggyBac technologies].
    Wang J; Huang J; Xu R
    Yi Chuan; 2019 May; 41(5):422-429. PubMed ID: 31106778
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Endogenous Fluorescence Tagging by CRISPR.
    Bukhari H; Müller T
    Trends Cell Biol; 2019 Nov; 29(11):912-928. PubMed ID: 31522960
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optical Genome Mapping Reveals Genomic Alterations upon Gene Editing in hiPSCs: Implications for Neural Tissue Differentiation and Brain Organoid Research.
    Gallego Villarejo L; Gerding WM; Bachmann L; Hardt LHI; Bormann S; Nguyen HP; Müller T
    Cells; 2024 Mar; 13(6):. PubMed ID: 38534351
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An update on precision genome editing by homology-directed repair in plants.
    Chen J; Li S; He Y; Li J; Xia L
    Plant Physiol; 2022 Mar; 188(4):1780-1794. PubMed ID: 35238390
    [TBL] [Abstract][Full Text] [Related]  

  • 53. CRISPR Base Editing in Induced Pluripotent Stem Cells.
    Chang YJ; Xu CL; Cui X; Bassuk AG; Mahajan VB; Tsai YT; Tsang SH
    Methods Mol Biol; 2019; 2045():337-346. PubMed ID: 31250381
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Differentiation and Contractile Analysis of GFP-Sarcomere Reporter hiPSC-Cardiomyocytes.
    Sharma A; Toepfer CN; Schmid M; Garfinkel AC; Seidman CE
    Curr Protoc Hum Genet; 2018 Jan; 96():21.12.1-21.12.12. PubMed ID: 29364522
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.
    Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Production of genome-edited pluripotent stem cells and mice by CRISPR/Cas.
    Horii T; Hatada I
    Endocr J; 2016; 63(3):213-9. PubMed ID: 26743444
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Accurate analysis of genuine CRISPR editing events with ampliCan.
    Labun K; Guo X; Chavez A; Church G; Gagnon JA; Valen E
    Genome Res; 2019 May; 29(5):843-847. PubMed ID: 30850374
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Application of CRISPR/Cas9 technologies combined with iPSCs in the study and treatment of retinal degenerative diseases.
    Cai B; Sun S; Li Z; Zhang X; Ke Y; Yang J; Li X
    Hum Genet; 2018 Sep; 137(9):679-688. PubMed ID: 30203114
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.