BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 29364524)

  • 1. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice.
    Chen L; Zhao Y; Xu S; Zhang Z; Xu Y; Zhang J; Chong K
    New Phytol; 2018 Apr; 218(1):219-231. PubMed ID: 29364524
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14.
    Guo S; Xu Y; Liu H; Mao Z; Zhang C; Ma Y; Zhang Q; Meng Z; Chong K
    Nat Commun; 2013; 4():1566. PubMed ID: 23463009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice.
    Wang J; Ren Y; Liu X; Luo S; Zhang X; Liu X; Lin Q; Zhu S; Wan H; Yang Y; Zhang Y; Lei B; Zhou C; Pan T; Wang Y; Wu M; Jing R; Xu Y; Han M; Wu F; Lei C; Guo X; Cheng Z; Zheng X; Wang Y; Zhao Z; Jiang L; Zhang X; Wang YF; Wang H; Wan J
    Mol Plant; 2021 Feb; 14(2):315-329. PubMed ID: 33278597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rice transcription factor, OsMADS57, positively regulates high salinity tolerance in transgenic Arabidopsis thaliana and Oryza sativa plants.
    Wu J; Yu C; Huang L; Gan Y
    Physiol Plant; 2021 Nov; 173(3):1120-1135. PubMed ID: 34287928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice.
    Zhang J; Luo W; Zhao Y; Xu Y; Song S; Chong K
    New Phytol; 2016 Sep; 211(4):1295-310. PubMed ID: 27198693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OsGRF6 interacts with SLR1 to regulate OsGA2ox1 expression for coordinating chilling tolerance and growth in rice.
    Li Z; Wang B; Zhang Z; Luo W; Tang Y; Niu Y; Chong K; Xu Y
    J Plant Physiol; 2021 May; 260():153406. PubMed ID: 33756268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Transcription Factor, OsMADS57, Regulates Long-Distance Nitrate Transport and Root Elongation.
    Huang S; Liang Z; Chen S; Sun H; Fan X; Wang C; Xu G; Zhang Y
    Plant Physiol; 2019 Jun; 180(2):882-895. PubMed ID: 30886113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global expression profiling of low temperature induced genes in the chilling tolerant japonica rice Jumli Marshi.
    Chawade A; Lindlöf A; Olsson B; Olsson O
    PLoS One; 2013; 8(12):e81729. PubMed ID: 24349120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genes, pathways and transcription factors involved in seedling stage chilling stress tolerance in indica rice through RNA-Seq analysis.
    Pradhan SK; Pandit E; Nayak DK; Behera L; Mohapatra T
    BMC Plant Biol; 2019 Aug; 19(1):352. PubMed ID: 31412781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes.
    Ma Q; Dai X; Xu Y; Guo J; Liu Y; Chen N; Xiao J; Zhang D; Xu Z; Zhang X; Chong K
    Plant Physiol; 2009 May; 150(1):244-56. PubMed ID: 19279197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the genetic basis of natural chilling and cold shock tolerance in rice by genome-wide association analysis.
    Lv Y; Guo Z; Li X; Ye H; Li X; Xiong L
    Plant Cell Environ; 2016 Mar; 39(3):556-70. PubMed ID: 26381647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural variation in the
    Mao D; Xin Y; Tan Y; Hu X; Bai J; Liu ZY; Yu Y; Li L; Peng C; Fan T; Zhu Y; Guo YL; Wang S; Lu D; Xing Y; Yuan L; Chen C
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3494-3501. PubMed ID: 30808744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice.
    Liu Y; Xu C; Zhu Y; Zhang L; Chen T; Zhou F; Chen H; Lin Y
    J Integr Plant Biol; 2018 Feb; 60(2):173-188. PubMed ID: 29193704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordination of light, circadian clock with temperature: The potential mechanisms regulating chilling tolerance in rice.
    Lu X; Zhou Y; Fan F; Peng J; Zhang J
    J Integr Plant Biol; 2020 Jun; 62(6):737-760. PubMed ID: 31243851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress.
    Fang C; Zhang P; Jian X; Chen W; Lin H; Li Y; Lin W
    Plant Sci; 2017 Sep; 262():115-126. PubMed ID: 28716407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooling water before panicle initiation increases chilling-induced male sterility and disables chilling-induced expression of genes encoding OsFKBP65 and heat shock proteins in rice spikelets.
    Suzuki K; Aoki N; Matsumura H; Okamura M; Ohsugi R; Shimono H
    Plant Cell Environ; 2015 Jul; 38(7):1255-74. PubMed ID: 25496090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The OsWRKY63-OsWRKY76-OsDREB1B module regulates chilling tolerance in rice.
    Zhang M; Zhao R; Huang K; Huang S; Wang H; Wei Z; Li Z; Bian M; Jiang W; Wu T; Du X
    Plant J; 2022 Oct; 112(2):383-398. PubMed ID: 35996876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability.
    Sun Y; Xie Z; Jin L; Qin T; Zhan C; Huang J
    Plant Cell; 2024 May; 36(5):1913-1936. PubMed ID: 38242836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance.
    Huang L; Hong Y; Zhang H; Li D; Song F
    BMC Plant Biol; 2016 Sep; 16(1):203. PubMed ID: 27646344
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.).
    Yang C; Li D; Mao D; Liu X; Ji C; Li X; Zhao X; Cheng Z; Chen C; Zhu L
    Plant Cell Environ; 2013 Dec; 36(12):2207-18. PubMed ID: 23651319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.