These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29364668)

  • 1. Probability and Flux Densities in the Center-of-Mass Frame.
    Barth I
    J Phys Chem A; 2018 Mar; 122(8):2144-2149. PubMed ID: 29364668
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vibrating H2(+)((2)Σg(+), JM = 00) ion as a pulsating quantum bubble in the laboratory frame.
    Manz J; Pérez-Torres JF; Yang Y
    J Phys Chem A; 2014 Sep; 118(37):8411-25. PubMed ID: 24707953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociating H₂⁺(²Σg⁺,JM=00) ion as an exploding quantum bubble.
    Pérez-Torres JF
    J Phys Chem A; 2015 Mar; 119(12):2895-901. PubMed ID: 25751643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Na
    Diestler DJ; Jia D; Manz J; Yang Y
    J Phys Chem A; 2018 Mar; 122(8):2150-2159. PubMed ID: 29364671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Flux Density beyond the Born-Oppenheimer Approximation.
    Schild A; Agostini F; Gross EK
    J Phys Chem A; 2016 May; 120(19):3316-25. PubMed ID: 26878256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum flux densities for electronic-nuclear motion: exact versus Born-Oppenheimer dynamics.
    Schaupp T; Engel V
    Philos Trans A Math Phys Eng Sci; 2022 May; 380(2223):20200385. PubMed ID: 35341310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computation of the electronic flux density in the Born-Oppenheimer approximation.
    Diestler DJ; Kenfack A; Manz J; Paulus B; Pérez-Torres JF; Pohl V
    J Phys Chem A; 2013 Sep; 117(36):8519-27. PubMed ID: 23425513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Born-Oppenheimer electronic and nuclear densities for a Hooke-Calogero three-particle model: non-uniqueness of density-derived molecular structure.
    Ludeña EV; Echevarría L; Lopez X; Ugalde JM
    J Chem Phys; 2012 Feb; 136(8):084103. PubMed ID: 22380028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Beyond the Born-Oppenheimer approximation: a treatment of electronic flux density in electronically adiabatic molecular processes.
    Diestler DJ
    J Phys Chem A; 2013 Jun; 117(22):4698-708. PubMed ID: 23634652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: application to the hydrogen molecule ion.
    Diestler DJ; Kenfack A; Manz J; Paulus B
    J Phys Chem A; 2012 Mar; 116(11):2736-42. PubMed ID: 22103738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent momentum expectation values from different quantum probability and flux densities.
    Schaupp T; Renziehausen K; Barth I; Engel V
    J Chem Phys; 2021 Feb; 154(6):064307. PubMed ID: 33588545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle.
    Albert J; Hader K; Engel V
    J Chem Phys; 2017 Dec; 147(24):241101. PubMed ID: 29289118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.
    Diestler DJ
    J Phys Chem A; 2012 Mar; 116(11):2728-35. PubMed ID: 22103768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoionization of Oriented HD(
    Flórez-Angarita MF; Pérez-Torres JF
    J Phys Chem A; 2022 Dec; 126(48):8918-8929. PubMed ID: 36416751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum theory of concerted electronic and nuclear fluxes associated with adiabatic intramolecular processes.
    Bredtmann T; Diestler DJ; Li SD; Manz J; Pérez-Torres JF; Tian WJ; Wu YB; Yang Y; Zhai HJ
    Phys Chem Chem Phys; 2015 Nov; 17(44):29421-64. PubMed ID: 26480293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-Dependent Expectation Values from Integral Equations for Quantum Flux and Probability Densities.
    Schürger P; Renziehausen K; Schaupp T; Barth I; Engel V
    J Phys Chem A; 2022 Dec; 126(48):8964-8975. PubMed ID: 36413488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photofragment angular momentum distribution beyond the axial recoil approximation: predissociation.
    Kuznetsov VV; Vasyutinskii OS
    J Chem Phys; 2007 Jul; 127(4):044308. PubMed ID: 17672691
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.
    Kvaal S; Helgaker T
    J Chem Phys; 2015 Nov; 143(18):184106. PubMed ID: 26567645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear fluxes in diatomic molecules deduced from pump-probe spectra with spatiotemporal resolutions down to 5 pm and 200 asec.
    Manz J; Pérez-Torres JF; Yang Y
    Phys Rev Lett; 2013 Oct; 111(15):153004. PubMed ID: 24160597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On equilibrium structures of the water molecule.
    Császár AG; Czakó G; Furtenbacher T; Tennyson J; Szalay V; Shirin SV; Zobov NF; Polyansky OL
    J Chem Phys; 2005 Jun; 122(21):214305. PubMed ID: 15974736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.