These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 29364859)

  • 1. Nanofiltration and Tight Ultrafiltration Membranes for the Recovery of Polyphenols from Agro-Food By-Products.
    Cassano A; Conidi C; Ruby-Figueroa R; Castro-Muñoz R
    Int J Mol Sci; 2018 Jan; 19(2):. PubMed ID: 29364859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenolic compounds recovered from agro-food by-products using membrane technologies: An overview.
    Castro-Muñoz R; Yáñez-Fernández J; Fíla V
    Food Chem; 2016 Dec; 213():753-762. PubMed ID: 27451244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Membrane-based technologies for meeting the recovery of biologically active compounds from foods and their by-products.
    Castro-Muñoz R; Conidi C; Cassano A
    Crit Rev Food Sci Nutr; 2019; 59(18):2927-2948. PubMed ID: 29787307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Combination of Aqueous Extraction and Polymeric Membranes as a Sustainable Process for the Recovery of Polyphenols from Olive Mill Solid Wastes.
    Conidi C; Egea-Corbacho A; Cassano A
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31726794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractionation of olive mill wastewaters by membrane separation techniques.
    Cassano A; Conidi C; Giorno L; Drioli E
    J Hazard Mater; 2013 Mar; 248-249():185-93. PubMed ID: 23376489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation of Biologically Active Compounds by Membrane Operations.
    Zhu X; Bai R
    Curr Pharm Des; 2017; 23(2):218-230. PubMed ID: 27799041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparative Study of the Effects of Ultrafiltration Membranes and Storage on Phytochemical and Color Properties of Mulberry Juice.
    Li F; Yan H; Li W; Zhao J; Ming J
    J Food Sci; 2019 Dec; 84(12):3565-3572. PubMed ID: 31750950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and purification of benzylpenicillin produced by fermentation using coupled ultrafiltration and nanofiltration technologies.
    Tessier L; Bouchard P; Rahni M
    J Biotechnol; 2005 Mar; 116(1):79-89. PubMed ID: 15652431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Concentration and Fractionation of Polyphenols by Membrane Operations.
    Tylkowski B; Nowak M; Tsibranska I; Trojanowska A; Marciniak L; Valls RG; Gumi T; Giamberini M; Jastrząb R
    Curr Pharm Des; 2017; 23(2):231-241. PubMed ID: 27774906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of ultrafiltration and nanofiltration membranes for the purification of cork processing wastewater.
    Benítez FJ; Acero JL; Leal AI; González M
    J Hazard Mater; 2009 Mar; 162(2-3):1438-45. PubMed ID: 18650003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of Natural Polyphenols from Spinach and Orange By-Products by Pressure-Driven Membrane Processes.
    Montenegro-Landívar MF; Tapia-Quirós P; Vecino X; Reig M; Granados M; Farran A; Cortina JL; Saurina J; Valderrama C
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane treatment of alkaline bleaching effluents from elementary chlorine free kraft softwood cellulose production.
    Oñate E; Rodríguez E; Bórquez R; Zaror C
    Environ Technol; 2015; 36(5-8):890-900. PubMed ID: 25253193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of phenolic compounds from wine lees using green processing: Identifying target molecules and assessing membrane ultrafiltration performance.
    Mir-Cerdà A; Carretero I; Coves JR; Pedrouso A; Castro-Barros CM; Alvarino T; Cortina JL; Saurina J; Granados M; Sentellas S
    Sci Total Environ; 2023 Jan; 857(Pt 3):159623. PubMed ID: 36283524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling Ultrafiltration-Based Processes to Concentrate Phenolic Compounds from Aqueous Goji Berry Extracts.
    Conidi C; Drioli E; Cassano A
    Molecules; 2020 Aug; 25(16):. PubMed ID: 32824751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafiltration and Nanofiltration for the Removal of Pharmaceutically Active Compounds from Water: The Effect of Operating Pressure on Electrostatic Solute-Membrane Interactions.
    Giacobbo A; Pasqualotto IF; Machado Filho RCC; Minhalma M; Bernardes AM; Pinho MN
    Membranes (Basel); 2023 Aug; 13(8):. PubMed ID: 37623804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane Technology for Valorization of Mango Peel Extracts.
    Macedo A; Gomes T; Ribeiro C; Moldão-Martins M; Duarte E; Alves VD
    Foods; 2022 Aug; 11(17):. PubMed ID: 36076767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Membrane applications in functional foods and nutraceuticals.
    Akin O; Temelli F; Köseoğlu S
    Crit Rev Food Sci Nutr; 2012; 52(4):347-71. PubMed ID: 22332598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of Anthocyanins and Monosaccharides from Grape Marc Extract by Nanofiltration Membranes.
    Muñoz P; Pérez K; Cassano A; Ruby-Figueroa R
    Molecules; 2021 Apr; 26(7):. PubMed ID: 33916021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the performance of UF membranes in olive mill wastewaters treatment.
    Cassano A; Conidi C; Drioli E
    Water Res; 2011 May; 45(10):3197-204. PubMed ID: 21489594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of phenyl-urea herbicides in ultrapure water by ultrafiltration and nanofiltration processes.
    Benitez FJ; Acero JL; Real FJ; Garcia C
    Water Res; 2009 Feb; 43(2):267-76. PubMed ID: 18947854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.