These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 29364869)
1. The honeycomb maze provides a novel test to study hippocampal-dependent spatial navigation. Wood RA; Bauza M; Krupic J; Burton S; Delekate A; Chan D; O'Keefe J Nature; 2018 Feb; 554(7690):102-105. PubMed ID: 29364869 [TBL] [Abstract][Full Text] [Related]
2. Lesions of the hippocampus or dorsolateral striatum disrupt distinct aspects of spatial navigation strategies based on proximal and distal information in a cued variant of the Morris water task. Rice JP; Wallace DG; Hamilton DA Behav Brain Res; 2015 Aug; 289():105-17. PubMed ID: 25907746 [TBL] [Abstract][Full Text] [Related]
3. Navigation using global or local reference frames in rats with medial and lateral entorhinal cortex lesions. Poitreau J; Buttet M; Manrique C; Poucet B; Sargolini F; Save E Behav Brain Res; 2021 Sep; 413():113448. PubMed ID: 34246711 [TBL] [Abstract][Full Text] [Related]
4. The ventral hippocampus is involved in multi-goal obstacle-rich spatial navigation. Contreras M; Pelc T; Llofriu M; Weitzenfeld A; Fellous JM Hippocampus; 2018 Dec; 28(12):853-866. PubMed ID: 30067283 [TBL] [Abstract][Full Text] [Related]
5. Adult neurogenesis promotes efficient, nonspecific search strategies in a spatial alternation water maze task. Yu RQ; Cooke M; Seib DR; Zhao J; Snyder JS Behav Brain Res; 2019 Dec; 376():112151. PubMed ID: 31445978 [TBL] [Abstract][Full Text] [Related]
6. Hippocampal place cells have goal-oriented vector fields during navigation. Ormond J; O'Keefe J Nature; 2022 Jul; 607(7920):741-746. PubMed ID: 35794477 [TBL] [Abstract][Full Text] [Related]
7. Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. Hollup SA; Kjelstrup KG; Hoff J; Moser MB; Moser EI J Neurosci; 2001 Jun; 21(12):4505-13. PubMed ID: 11404438 [TBL] [Abstract][Full Text] [Related]
8. Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior. Fouquet C; Babayan BM; Watilliaux A; Bontempi B; Tobin C; Rondi-Reig L PLoS One; 2013; 8(6):e67232. PubMed ID: 23826243 [TBL] [Abstract][Full Text] [Related]
9. Reduced Hippocampal Volumes Partially Mediate Effects of Prenatal Alcohol Exposure on Spatial Navigation on a Virtual Water Maze Task in Children. Dodge NC; Thomas KGF; Meintjes EM; Molteno CD; Jacobson JL; Jacobson SW Alcohol Clin Exp Res; 2020 Apr; 44(4):844-855. PubMed ID: 32196695 [TBL] [Abstract][Full Text] [Related]
10. A novel, rapidly acquired and persistent spatial memory task that induces immediate early gene expression. Feldman LA; Shapiro ML; Nalbantoglu J Behav Brain Funct; 2010 Jul; 6():35. PubMed ID: 20594357 [TBL] [Abstract][Full Text] [Related]
11. Dissociation of hippocampal and striatal contributions to spatial navigation in the water maze. Devan BD; Goad EH; Petri HL Neurobiol Learn Mem; 1996 Nov; 66(3):305-23. PubMed ID: 8946424 [TBL] [Abstract][Full Text] [Related]
12. Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors. Pearce JM; Roberts AD; Good M Nature; 1998 Nov; 396(6706):75-7. PubMed ID: 9817202 [TBL] [Abstract][Full Text] [Related]
13. Shifting between response and place strategies in maze navigation: Effects of training, cue availability and functional inactivation of striatum or hippocampus in rats. Gasser J; Pereira de Vasconcelos A; Cosquer B; Boutillier AL; Cassel JC Neurobiol Learn Mem; 2020 Jan; 167():107131. PubMed ID: 31783128 [TBL] [Abstract][Full Text] [Related]
14. The effects of combined lesions of the subicular complex and the entorhinal cortex on two forms of spatial navigation in the water maze. Oswald CJ; Good M Behav Neurosci; 2000 Feb; 114(1):211-7. PubMed ID: 10718275 [TBL] [Abstract][Full Text] [Related]
15. Spatial learning and memory following fimbria-fornix transection and grafting of fetal septal neurons to the hippocampus. Nilsson OG; Shapiro ML; Gage FH; Olton DS; Björklund A Exp Brain Res; 1987; 67(1):195-215. PubMed ID: 3622677 [TBL] [Abstract][Full Text] [Related]
16. Differential Arc expression in the hippocampus and striatum during the transition from attentive to automatic navigation on a plus maze. Gardner RS; Suarez DF; Robinson-Burton NK; Rudnicky CJ; Gulati A; Ascoli GA; Dumas TC Neurobiol Learn Mem; 2016 May; 131():36-45. PubMed ID: 26976088 [TBL] [Abstract][Full Text] [Related]
17. Pretraining or previous non-spatial experience improves spatial learning in the Morris water maze of nucleus basalis lesioned rats. Nieto-Escámez FA; Sánchez-Santed F; de Bruin JP Behav Brain Res; 2004 Jan; 148(1-2):55-71. PubMed ID: 14684248 [TBL] [Abstract][Full Text] [Related]
18. Search strategy selection in the Morris water maze indicates allocentric map formation during learning that underpins spatial memory formation. Rogers J; Churilov L; Hannan AJ; Renoir T Neurobiol Learn Mem; 2017 Mar; 139():37-49. PubMed ID: 27988312 [TBL] [Abstract][Full Text] [Related]
19. Recent and remote retrograde memory deficit in rats with medial entorhinal cortex lesions. Hales JB; Vincze JL; Reitz NT; Ocampo AC; Leutgeb S; Clark RE Neurobiol Learn Mem; 2018 Nov; 155():157-163. PubMed ID: 30075194 [TBL] [Abstract][Full Text] [Related]
20. Learning associations between places and visual cues without learning to navigate: neither fornix nor entorhinal cortex is required. Gaffan EA; Bannerman DM; Healey AN Hippocampus; 2003; 13(4):445-60. PubMed ID: 12836914 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]