These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
176 related articles for article (PubMed ID: 29365040)
1. Adjusting for unmeasured spatial confounding with distance adjusted propensity score matching. Papadogeorgou G; Choirat C; Zigler CM Biostatistics; 2019 Apr; 20(2):256-272. PubMed ID: 29365040 [TBL] [Abstract][Full Text] [Related]
2. Propensity score matching for multilevel spatial data: accounting for geographic confounding in health disparity studies. Davis ML; Neelon B; Nietert PJ; Burgette LF; Hunt KJ; Lawson AB; Egede LE Int J Health Geogr; 2021 Feb; 20(1):10. PubMed ID: 33639940 [TBL] [Abstract][Full Text] [Related]
3. Matching methods to quantify wildfire effects on forest carbon mass in the U.S. Pacific Northwest. Woo H; Eskelson BNI; Monleon VJ Ecol Appl; 2021 Apr; 31(3):e02283. PubMed ID: 33368744 [TBL] [Abstract][Full Text] [Related]
4. Assessment of the E-value in the presence of bias amplification: a simulation study. Barrette E; Higuera L; Wherry K BMC Med Res Methodol; 2024 Mar; 24(1):79. PubMed ID: 38539082 [TBL] [Abstract][Full Text] [Related]
5. Adjusting for unmeasured confounding in nonrandomized longitudinal studies: a methodological review. Streeter AJ; Lin NX; Crathorne L; Haasova M; Hyde C; Melzer D; Henley WE J Clin Epidemiol; 2017 Jul; 87():23-34. PubMed ID: 28460857 [TBL] [Abstract][Full Text] [Related]
6. Addressing geographic confounding through spatial propensity scores: a study of racial disparities in diabetes. Davis ML; Neelon B; Nietert PJ; Hunt KJ; Burgette LF; Lawson AB; Egede LE Stat Methods Med Res; 2019 Mar; 28(3):734-748. PubMed ID: 29145767 [TBL] [Abstract][Full Text] [Related]
7. Merits and caveats of propensity scores to adjust for confounding. Fu EL; Groenwold RHH; Zoccali C; Jager KJ; van Diepen M; Dekker FW Nephrol Dial Transplant; 2019 Oct; 34(10):1629-1635. PubMed ID: 30215791 [TBL] [Abstract][Full Text] [Related]
9. Ten things to remember about propensity scores. Groenwold RHH; Dekkers OM; le Cessie S Eur J Endocrinol; 2024 Jul; 191(1):E1-E4. PubMed ID: 38872400 [TBL] [Abstract][Full Text] [Related]
10. A comparison of different methods to handle missing data in the context of propensity score analysis. Choi J; Dekkers OM; le Cessie S Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708 [TBL] [Abstract][Full Text] [Related]
11. [Confounder adjustment in observational comparative effectiveness researches: (2) statistical adjustment approaches for unmeasured confounders]. Huang LL; Wei YY; Chen F Zhonghua Liu Xing Bing Xue Za Zhi; 2019 Nov; 40(11):1450-1455. PubMed ID: 31838820 [TBL] [Abstract][Full Text] [Related]
12. Effectiveness of triple therapy with direct-acting antivirals for hepatitis C genotype 1 infection: application of propensity score matching in a national HCV treatment registry. Gray E; Pasta DJ; Norris S; O'Leary A; BMC Health Serv Res; 2017 Apr; 17(1):288. PubMed ID: 28424064 [TBL] [Abstract][Full Text] [Related]
13. On regression adjustment for the propensity score. Vansteelandt S; Daniel RM Stat Med; 2014 Oct; 33(23):4053-72. PubMed ID: 24825821 [TBL] [Abstract][Full Text] [Related]
14. A comparison of confounder selection and adjustment methods for estimating causal effects using large healthcare databases. Benasseur I; Talbot D; Durand M; Holbrook A; Matteau A; Potter BJ; Renoux C; Schnitzer ME; Tarride JÉ; Guertin JR Pharmacoepidemiol Drug Saf; 2022 Apr; 31(4):424-433. PubMed ID: 34953160 [TBL] [Abstract][Full Text] [Related]
15. The use of the E-value for sensitivity analysis. Chung WT; Chung KC J Clin Epidemiol; 2023 Nov; 163():92-94. PubMed ID: 37783401 [TBL] [Abstract][Full Text] [Related]
16. Propensity scores for confounder adjustment when assessing the effects of medical interventions using nonexperimental study designs. Stürmer T; Wyss R; Glynn RJ; Brookhart MA J Intern Med; 2014 Jun; 275(6):570-80. PubMed ID: 24520806 [TBL] [Abstract][Full Text] [Related]
17. Flexible propensity score estimation strategies for clustered data in observational studies. Chang TH; Nguyen TQ; Lee Y; Jackson JW; Stuart EA Stat Med; 2022 Nov; 41(25):5016-5032. PubMed ID: 36263918 [TBL] [Abstract][Full Text] [Related]
18. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study. Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050 [TBL] [Abstract][Full Text] [Related]
19. Incorporating Bayesian methods into the propensity score matching framework: A no-treatment effect safety analysis. Li L; Donnell ET Accid Anal Prev; 2020 Sep; 145():105691. PubMed ID: 32711214 [TBL] [Abstract][Full Text] [Related]
20. Indications for propensity scores and review of their use in pharmacoepidemiology. Glynn RJ; Schneeweiss S; Stürmer T Basic Clin Pharmacol Toxicol; 2006 Mar; 98(3):253-9. PubMed ID: 16611199 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]