These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29365210)

  • 21. Plant litter chemistry and microbial priming regulate the accrual, composition and stability of soil carbon in invaded ecosystems.
    Tamura M; Tharayil N
    New Phytol; 2014 Jul; 203(1):110-24. PubMed ID: 24720813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).
    Soleimani A; Hosseini SM; Massah Bavani AR; Jafari M; Francaviglia R
    Sci Total Environ; 2017 Dec; 599-600():1646-1657. PubMed ID: 28535593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of climate change, CO2 trends, nitrogen addition, and land-cover and management intensity changes on the carbon balance of European grasslands.
    Chang J; Ciais P; Viovy N; Vuichard N; Herrero M; Havlík P; Wang X; Sultan B; Soussana JF
    Glob Chang Biol; 2016 Jan; 22(1):338-50. PubMed ID: 26207894
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vascular plants promote ancient peatland carbon loss with climate warming.
    Walker TN; Garnett MH; Ward SE; Oakley S; Bardgett RD; Ostle NJ
    Glob Chang Biol; 2016 May; 22(5):1880-9. PubMed ID: 26730448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nitrogen limitation on land: how can it occur in Earth system models?
    Thomas RQ; Brookshire EN; Gerber S
    Glob Chang Biol; 2015 May; 21(5):1777-93. PubMed ID: 25643841
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.
    Wiesmeier M; Hübner R; Spörlein P; Geuß U; Hangen E; Reischl A; Schilling B; von Lützow M; Kögel-Knabner I
    Glob Chang Biol; 2014 Feb; 20(2):653-65. PubMed ID: 24038905
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of substrate addition on soil respiratory carbon release under long-term warming and clipping in a tallgrass prairie.
    Jia X; Zhou X; Luo Y; Xue K; Xue X; Xu X; Yang Y; Wu L; Zhou J
    PLoS One; 2014; 9(12):e114203. PubMed ID: 25490701
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Faster decomposition under increased atmospheric CO₂ limits soil carbon storage.
    van Groenigen KJ; Qi X; Osenberg CW; Luo Y; Hungate BA
    Science; 2014 May; 344(6183):508-9. PubMed ID: 24762538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of a two-pool model to soil carbon dynamics under elevated CO2.
    van Groenigen KJ; Xia J; Osenberg CW; Luo Y; Hungate BA
    Glob Chang Biol; 2015 Dec; 21(12):4293-7. PubMed ID: 26313640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area.
    Lozano-García B; Muñoz-Rojas M; Parras-Alcántara L
    Sci Total Environ; 2017 Feb; 579():1249-1259. PubMed ID: 27913021
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Increased topsoil carbon stock across China's forests.
    Yang Y; Li P; Ding J; Zhao X; Ma W; Ji C; Fang J
    Glob Chang Biol; 2014 Aug; 20(8):2687-96. PubMed ID: 24453073
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Forest litter decomposition and its responses to global climate change].
    Yang WQ; Deng RJ; Zhang J
    Ying Yong Sheng Tai Xue Bao; 2007 Dec; 18(12):2889-95. PubMed ID: 18333472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Projected carbon stocks in the conterminous USA with land use and variable fire regimes.
    Bachelet D; Ferschweiler K; Sheehan TJ; Sleeter BM; Zhu Z
    Glob Chang Biol; 2015 Dec; 21(12):4548-60. PubMed ID: 26207729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.
    Doetterl S; Kearsley E; Bauters M; Hufkens K; Lisingo J; Baert G; Verbeeck H; Boeckx P
    PLoS One; 2015; 10(11):e0143209. PubMed ID: 26599231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Land-use conversion and changing soil carbon stocks in China's 'Grain-for-Green' Program: a synthesis.
    Deng L; Liu GB; Shangguan ZP
    Glob Chang Biol; 2014 Nov; 20(11):3544-56. PubMed ID: 24357470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs.
    Fan Z; Liang C
    Sci Rep; 2015 Apr; 5():9575. PubMed ID: 25849864
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Modelling the dynamic physical protection of soil organic carbon: Insights into carbon predictions and explanation of the priming effect.
    Luo Z; Baldock J; Wang E
    Glob Chang Biol; 2017 Dec; 23(12):5273-5283. PubMed ID: 28618203
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modelling the impact of agricultural management on soil carbon stocks at the regional scale: the role of lateral fluxes.
    Nadeu E; Gobin A; Fiener P; van Wesemael B; van Oost K
    Glob Chang Biol; 2015 Aug; 21(8):3181-92. PubMed ID: 25663657
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.
    Sihi D; Inglett PW; Gerber S; Inglett KS
    Glob Chang Biol; 2018 Jan; 24(1):e259-e274. PubMed ID: 28746792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Litter input decreased the response of soil organic matter decomposition to warming in two subtropical forest soils.
    Wang Q; He T; Liu J
    Sci Rep; 2016 Sep; 6():33814. PubMed ID: 27644258
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.