These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 29365214)

  • 1. Reaction Pathway Dependence in Plasmonic Catalysis: Hydrogenation as a Model Molecular Transformation.
    Barbosa ECM; Fiorio JL; Mou T; Wang B; Rossi LM; Camargo PHC
    Chemistry; 2018 Aug; 24(47):12330-12339. PubMed ID: 29365214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling Reaction Selectivity over Hybrid Plasmonic Nanocatalysts.
    Quiroz J; Barbosa ECM; Araujo TP; Fiorio JL; Wang YC; Zou YC; Mou T; Alves TV; de Oliveira DC; Wang B; Haigh SJ; Rossi LM; Camargo PHC
    Nano Lett; 2018 Nov; 18(11):7289-7297. PubMed ID: 30352162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic catalysis with designer nanoparticles.
    da Silva AGM; Rodrigues TS; Wang J; Camargo PHC
    Chem Commun (Camb); 2022 Feb; 58(13):2055-2074. PubMed ID: 35044391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Selectivity in Plasmonic Catalysis: Switching Reaction Pathway from Hydrogenation to Homocoupling Under Visible-Light Irradiation.
    Peiris E; Hanauer S; Le T; Wang J; Salavati-Fard T; Brasseur P; Formo EV; Wang B; Camargo PHC
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202216398. PubMed ID: 36417579
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-Driven Catalysis on Molecules and Nanomaterials.
    Zhang Z; Zhang C; Zheng H; Xu H
    Acc Chem Res; 2019 Sep; 52(9):2506-2515. PubMed ID: 31424904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy.
    Swearer DF; Bourgeois BB; Angell DK; Dionne JA
    Acc Chem Res; 2021 Oct; 54(19):3632-3642. PubMed ID: 34492177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of Plasmon-Enhanced Nanocatalysis to Organic Transformations.
    Gellé A; Jin T; de la Garza L; Price GD; Besteiro LV; Moores A
    Chem Rev; 2020 Jan; 120(2):986-1041. PubMed ID: 31725267
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Induced Voltages in Catalysis by Plasmonic Nanostructures.
    Wilson AJ; Jain PK
    Acc Chem Res; 2020 Sep; 53(9):1773-1781. PubMed ID: 32786334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidating the Roles of Local and Nonlocal Rate Enhancement Mechanisms in Plasmonic Catalysis.
    Elias RC; Linic S
    J Am Chem Soc; 2022 Nov; 144(43):19990-19998. PubMed ID: 36279510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial Distributions of Single-Molecule Reactivity in Plasmonic Catalysis.
    Ezendam S; Gargiulo J; Sousa-Castillo A; Lee JB; Nam YS; Maier SA; Cortés E
    ACS Nano; 2024 Jan; 18(1):451-460. PubMed ID: 37971988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Localized Orbital Excitation Drives Bond Formation in Plasmonic Catalysis.
    Mou T; Quiroz J; Camargo PHC; Wang B
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60115-60124. PubMed ID: 34874713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct Plasmon-Accelerated Electrochemical Reaction on Gold Nanoparticles.
    Wang C; Nie XG; Shi Y; Zhou Y; Xu JJ; Xia XH; Chen HY
    ACS Nano; 2017 Jun; 11(6):5897-5905. PubMed ID: 28494145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hot Electrons, Hot Holes, or Both? Tandem Synthesis of Imines Driven by the Plasmonic Excitation in Au/CeO
    Teixeira IF; Homsi MS; Geonmonond RS; Rocha GFSR; Peng YK; Silva IF; Quiroz J; Camargo PHC
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32759860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.
    Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P
    Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 10×-Enhanced Heterogeneous Nanocatalysis on a Nanoporous Gold Disk Array with High-Density Hot Spots.
    Arnob MMP; Artur C; Misbah I; Mubeen S; Shih WC
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13499-13506. PubMed ID: 30873828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis.
    Boerigter C; Campana R; Morabito M; Linic S
    Nat Commun; 2016 Jan; 7():10545. PubMed ID: 26817619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation Energies of Plasmonic Catalysts.
    Kim Y; Dumett Torres D; Jain PK
    Nano Lett; 2016 May; 16(5):3399-407. PubMed ID: 27064549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hot electron and thermal effects in plasmonic catalysis of nanocrystal transformation.
    Zhang C; Kong T; Fu Z; Zhang Z; Zheng H
    Nanoscale; 2020 Apr; 12(16):8768-8774. PubMed ID: 32101225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localized surface plasmon resonance-mediated fluorescence signals in plasmonic nanoparticle-quantum dot hybrids for ultrasensitive Zika virus RNA detection via hairpin hybridization assays.
    Adegoke O; Morita M; Kato T; Ito M; Suzuki T; Park EY
    Biosens Bioelectron; 2017 Aug; 94():513-522. PubMed ID: 28343104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.