These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 29365265)

  • 1. Solenoid Driven Pressure Valve System: Toward Versatile Fluidic Control in Paper Microfluidics.
    Kim TH; Hahn YK; Lee J; van Noort D; Kim MS
    Anal Chem; 2018 Feb; 90(4):2534-2541. PubMed ID: 29365265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A versatile valving toolkit for automating fluidic operations in paper microfluidic devices.
    Toley BJ; Wang JA; Gupta M; Buser JR; Lafleur LK; Lutz BR; Fu E; Yager P
    Lab Chip; 2015 Mar; 15(6):1432-44. PubMed ID: 25606810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new paper-based platform technology for point-of-care diagnostics.
    Gerbers R; Foellscher W; Chen H; Anagnostopoulos C; Faghri M
    Lab Chip; 2014 Oct; 14(20):4042-9. PubMed ID: 25155271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlling Capillary-Driven Fluid Transport in Paper-Based Microfluidic Devices Using a Movable Valve.
    Li B; Yu L; Qi J; Fu L; Zhang P; Chen L
    Anal Chem; 2017 Jun; 89(11):5707-5712. PubMed ID: 28474516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An inkjet-printed electrowetting valve for paper-fluidic sensors.
    Koo CK; He F; Nugen SR
    Analyst; 2013 Sep; 138(17):4998-5004. PubMed ID: 23828822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally actuated wax valves for paper-fluidic diagnostics.
    Phillips EA; Shen R; Zhao S; Linnes JC
    Lab Chip; 2016 Oct; 16(21):4230-4236. PubMed ID: 27722697
    [TBL] [Abstract][Full Text] [Related]  

  • 7. All-in-one automated microfluidics control system.
    Watson C; Senyo SE
    HardwareX; 2019 Apr; 5():. PubMed ID: 31192312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-dimensional surface microfluidics enabled by spatiotemporal control of elastic fluidic interface.
    Hong L; Pan T
    Lab Chip; 2010 Dec; 10(23):3271-6. PubMed ID: 20931123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photo-actuation of liquids for light-driven microfluidics: state of the art and perspectives.
    Baigl D
    Lab Chip; 2012 Oct; 12(19):3637-53. PubMed ID: 22864577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Paper Microfluidic Device with a Horizontal Motion Valve and a Localized Delay for Automatic Control of a Multistep Assay.
    Tu D; Holderby A; Dean J; Mabbott S; Coté GL
    Anal Chem; 2021 Mar; 93(10):4497-4505. PubMed ID: 33660983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A lab in a bento box: an autonomous centrifugal microfluidic system for an enzyme-linked immunosorbent assay.
    Abe T; Okamoto S; Taniguchi A; Fukui M; Yamaguchi A; Utsumi Y; Ukita Y
    Anal Methods; 2020 Oct; 12(40):4858-4866. PubMed ID: 32996935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of wax valving and μPIV analysis of microscale flow in paper-fluidic devices for improved modeling and design.
    Newsham EI; Phillips EA; Ma H; Chang MM; Wereley ST; Linnes JC
    Lab Chip; 2022 Jul; 22(14):2741-2752. PubMed ID: 35762978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A fast, reconfigurable flow switch for paper microfluidics based on selective wetting of folded paper actuator strips.
    Kong T; Flanigan S; Weinstein M; Kalwa U; Legner C; Pandey S
    Lab Chip; 2017 Oct; 17(21):3621-3633. PubMed ID: 28945259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling flow in microfluidic channels with a manually actuated pin valve.
    Brett ME; Zhao S; Stoia JL; Eddington DT
    Biomed Microdevices; 2011 Aug; 13(4):633-9. PubMed ID: 21472409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic timing valves for fluid control in paper-based microfluidics.
    Li X; Zwanenburg P; Liu X
    Lab Chip; 2013 Jul; 13(13):2609-14. PubMed ID: 23584207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An embedded microfluidic valve for dynamic control of cellular communication.
    DeAngelis MA; Ruder WC; LeDuc PR
    Appl Phys Lett; 2023 Dec; 123(24):244103. PubMed ID: 38094664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible liquid-diode microtubes from multimodal microfluidics.
    Yang C; Li W; Zhao Y; Shang L
    Proc Natl Acad Sci U S A; 2024 Jul; 121(28):e2402331121. PubMed ID: 38959044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluidic diode, valves, and a sequential-loading circuit fabricated on layered paper.
    Chen H; Cogswell J; Anagnostopoulos C; Faghri M
    Lab Chip; 2012 Aug; 12(16):2909-13. PubMed ID: 22699228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogel-driven paper-based microfluidics.
    Niedl RR; Beta C
    Lab Chip; 2015 Jun; 15(11):2452-9. PubMed ID: 25915556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.