These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 29365267)

  • 1. Decoding the Three-Pronged Mechanism of NO
    Musat R; Denisov SA; Marignier JL; Mostafavi M
    J Phys Chem B; 2018 Feb; 122(7):2121-2129. PubMed ID: 29365267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Picosecond pulse radiolysis study of highly concentrated nitric acid solutions: formation mechanism of NO3• radical.
    Balcerzyk A; El Omar AK; Schmidhammer U; Pernot P; Mostafavi M
    J Phys Chem A; 2012 Jul; 116(27):7302-7. PubMed ID: 22694323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Picosecond Pulse Radiolysis of Highly Concentrated Phosphoric Acid Solutions: Mechanism of Phosphate Radical Formation.
    Ma J; Schmidhammer U; Mostafavi M
    J Phys Chem B; 2015 Jun; 119(24):7180-5. PubMed ID: 25176139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Picosecond pulse radiolysis of highly concentrated sulfuric acid solutions: evidence for the oxidation reactivity of radical cation H2O(•+).
    Ma J; Schmidhammer U; Mostafavi M
    J Phys Chem A; 2014 Jun; 118(23):4030-7. PubMed ID: 24824373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Picosecond Pulse Radiolysis of Highly Concentrated Carbonate Solutions.
    Ghalei M; Ma J; Schmidhammer U; Vandenborre J; Fattahi M; Mostafavi M
    J Phys Chem B; 2016 Mar; 120(9):2434-9. PubMed ID: 26885876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pulse radiolysis study on the reactivity of NO
    Musat R; Marignier JL; Le Naour C; Denisov S; Venault L; Moisy P; Mostafavi M
    Phys Chem Chem Phys; 2020 Mar; 22(9):5188-5197. PubMed ID: 32090224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition reactions of H2O•+ radical in concentrated Cl- aqueous solutions: picosecond pulse radiolysis study.
    El Omar AK; Schmidhammer U; Rousseau B; LaVerne J; Mostafavi M
    J Phys Chem A; 2012 Nov; 116(47):11509-18. PubMed ID: 23116205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Processes Occurring in Radiolysis of Highly Concentrated Solutions of Nucleosides/Tides.
    Ma J; Denisov SA; Adhikary A; Mostafavi M
    Int J Mol Sci; 2019 Oct; 20(19):. PubMed ID: 31597345
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decay Mechanism of NO3(•) Radical in Highly Concentrated Nitrate and Nitric Acidic Solutions in the Absence and Presence of Hydrazine.
    Garaix G; Horne GP; Venault L; Moisy P; Pimblott SM; Marignier JL; Mostafavi M
    J Phys Chem B; 2016 Jun; 120(22):5008-14. PubMed ID: 27171587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactivity of the Strongest Oxidizing Species in Aqueous Solutions: The Short-Lived Radical Cation H2O(•.).
    Ma J; Schmidhammer U; Pernot P; Mostafavi M
    J Phys Chem Lett; 2014 Jan; 5(1):258-61. PubMed ID: 26276210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Time-dependent radiolytic yield of OH• radical studied by picosecond pulse radiolysis.
    El Omar AK; Schmidhammer U; Jeunesse P; Larbre JP; Lin M; Muroya Y; Katsumura Y; Pernot P; Mostafavi M
    J Phys Chem A; 2011 Nov; 115(44):12212-6. PubMed ID: 21970432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-dependent yield of the hydrated electron and the hydroxyl radical in D
    Wang F; Schmidhammer U; Larbre JP; Zong Z; Marignier JL; Mostafavi M
    Phys Chem Chem Phys; 2018 Jun; 20(23):15671-15679. PubMed ID: 29845125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Picosecond pulse radiolysis of direct and indirect radiolytic effects in highly concentrated halide aqueous solutions.
    Balcerzyk A; Schmidhammer U; El Omar AK; Jeunesse P; Larbre JP; Mostafavi M
    J Phys Chem A; 2011 Aug; 115(33):9151-9. PubMed ID: 21770462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spur reactions observed by picosecond pulse radiolysis in highly concentrated bromide aqueous solutions.
    El Omar AK; Schmidhammer U; Balcerzyk A; LaVerne J; Mostafavi M
    J Phys Chem A; 2013 Mar; 117(11):2287-93. PubMed ID: 23441977
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plutonium and Americium Alpha Radiolysis of Nitric Acid Solutions.
    Horne GP; Gregson CR; Sims HE; Orr RM; Taylor RJ; Pimblott SM
    J Phys Chem B; 2017 Feb; 121(4):883-889. PubMed ID: 28067515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenging the Water Cation in Concentrated Acidic Solutions.
    Ma J; LaVerne JA; Mostafavi M
    J Phys Chem A; 2015 Oct; 119(43):10629-36. PubMed ID: 26449261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radiolytic evaluation of a new technetium redox control reagent for advanced used nuclear fuel separations.
    Dang AN; Rogalski MH; Pilgrim CD; Wilbanks JR; Peterman DR; Carrie JD; Zalupski PR; Mezyk SP; Horne GP
    Phys Chem Chem Phys; 2024 Jan; 26(5):4039-4046. PubMed ID: 38224090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pulse radiolysis investigation of the reactions of tributyl phosphate with the radical products of aqueous nitric acid irradiation.
    Mincher BJ; Mezyk SP; Martin LR
    J Phys Chem A; 2008 Jul; 112(28):6275-80. PubMed ID: 18572898
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrazine Radiolysis by Gamma-Ray in the N
    Chang N; Won H; Park S; Eun H; Kim S; Seo B; Kim Y
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34298995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural investigation of Pd(II) in concentrated nitric and perchloric acid solutions by XAFS.
    Purans J; Fourest B; Cannes C; Sladkov V; David F; Venault L; Lecomte M
    J Phys Chem B; 2005 Jun; 109(21):11074-82. PubMed ID: 16852349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.