These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29365311)

  • 61. Design and development of masked therapeutic antibodies to limit off-target effects: application to anti-EGFR antibodies.
    Donaldson JM; Kari C; Fragoso RC; Rodeck U; Williams JC
    Cancer Biol Ther; 2009 Nov; 8(22):2147-52. PubMed ID: 19783899
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Erythrocytes as Carriers for Drug Delivery in Blood Transfusion and Beyond.
    Villa CH; Cines DB; Siegel DL; Muzykantov V
    Transfus Med Rev; 2017 Jan; 31(1):26-35. PubMed ID: 27707522
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Targeting melanoma with immunoliposomes coupled to anti-MAGE A1 TCR-like single-chain antibody.
    Saeed M; van Brakel M; Zalba S; Schooten E; Rens JA; Koning GA; Debets R; Ten Hagen TL
    Int J Nanomedicine; 2016; 11():955-75. PubMed ID: 27022262
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Construction and expression of human scFv-Fc against interleukin-33.
    Ye Y; Nian S; Xu W; Wu T; Wang X; Gao Y; Yuan Q
    Protein Expr Purif; 2015 Oct; 114():58-63. PubMed ID: 26112138
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Augmented erythrocyte band-3 phosphorylation in septic mice.
    Condon MR; Feketova E; Machiedo GW; Deitch EA; Spolarics Z
    Biochim Biophys Acta; 2007 May; 1772(5):580-6. PubMed ID: 17382523
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Production of stabilized scFv antibody fragments in the E. coli bacterial cytoplasm.
    Vaks L; Benhar I
    Methods Mol Biol; 2014; 1060():171-84. PubMed ID: 24037842
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Expression, purification and characterization of a human single-chain Fv antibody fragment fused with the Fc of an IgG1 targeting a rabies antigen in Pichia pastoris.
    Wang DD; Su MM; Sun Y; Huang SL; Wang J; Yan WQ
    Protein Expr Purif; 2012 Nov; 86(1):75-81. PubMed ID: 22982755
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Combined Fc-protein- and Fc-glyco-engineering of scFv-Fc fusion proteins synergistically enhances CD16a binding but does not further enhance NK-cell mediated ADCC.
    Repp R; Kellner C; Muskulus A; Staudinger M; Nodehi SM; Glorius P; Akramiene D; Dechant M; Fey GH; van Berkel PH; van de Winkel JG; Parren PW; Valerius T; Gramatzki M; Peipp M
    J Immunol Methods; 2011 Oct; 373(1-2):67-78. PubMed ID: 21855548
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Single chain variable fragment fused to maltose binding protein: a modular nanocarrier platform for the targeted delivery of antitumorals.
    Reche-Perez FJ; Plesselova S; De Los Reyes-Berbel E; Ortega-Muñoz M; Lopez-Jaramillo FJ; Hernandez-Mateo F; Santoyo-Gonzalez F; Salto-Gonzalez R; Giron-Gonzalez MD
    Biomater Sci; 2021 Mar; 9(5):1728-1738. PubMed ID: 33432316
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of selected GPA, GPA and GPB, and/or Band 3 MAbs.
    Moulds MK; Spruell P; Moulds JJ
    Transfus Clin Biol; 1997; 4(1):89. PubMed ID: 9095509
    [No Abstract]   [Full Text] [Related]  

  • 71. The use of single chain Fv as targeting agents for immunoliposomes: an update on immunoliposomal drugs for cancer treatment.
    Cheng WW; Allen TM
    Expert Opin Drug Deliv; 2010 Apr; 7(4):461-78. PubMed ID: 20331354
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Role of red blood cells in haemostasis and thrombosis.
    Litvinov RI; Weisel JW
    ISBT Sci Ser; 2017 Feb; 12(1):176-183. PubMed ID: 28458720
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanoparticle Properties Modulate Their Attachment and Effect on Carrier Red Blood Cells.
    Pan DC; Myerson JW; Brenner JS; Patel PN; Anselmo AC; Mitragotri S; Muzykantov V
    Sci Rep; 2018 Jan; 8(1):1615. PubMed ID: 29371620
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Organophosphate detoxification by membrane-engineered red blood cells.
    Smith PN; Mao L; Sinha K; Russell AJ
    Acta Biomater; 2021 Apr; 124():270-281. PubMed ID: 33529769
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Autoantibodies to red blood cell surface Glycophorin A impact the activation poise of circulating leukocytes.
    Klein MN; Larkin EJ; Marshall JN; Fan X; Parry P; Tirouvanziam R; Fontaine MJ
    Transfusion; 2022 Jan; 62(1):217-226. PubMed ID: 34796962
    [TBL] [Abstract][Full Text] [Related]  

  • 76.
    Hoffmann MAG; Kieffer C; Bjorkman PJ
    Mol Ther Methods Clin Dev; 2021 Jun; 21():161-170. PubMed ID: 33723514
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Clinical progress and advanced research of red blood cells based drug delivery system.
    Li Y; Raza F; Liu Y; Wei Y; Rong R; Zheng M; Yuan W; Su J; Qiu M; Li Y; Raza F; Liu Y; Wei Y; Rong R; Zheng M; Yuan W; Su J; Qiu M
    Biomaterials; 2021 Dec; 279():121202. PubMed ID: 34749072
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Non-classical processes in surface hemostasis: mechanisms for the poly-N-acetyl glucosamine-induced alteration of red blood cell morphology and surface prothrombogenicity.
    Fischer TH; Valeri CR; Smith CJ; Scull CM; Merricks EP; Nichols TC; Demcheva M; Vournakis JN
    Biomed Mater; 2008 Mar; 3(1):015009. PubMed ID: 18458496
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Novel engineering: Biomimicking erythrocyte as a revolutionary platform for drugs and vaccines delivery.
    Izzati Mat Rani NN; Alzubaidi ZM; Azhari H; Mustapa F; Iqbal Mohd Amin MC
    Eur J Pharmacol; 2021 Jun; 900():174009. PubMed ID: 33722591
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances.
    Zhang E; Phan P; Algarni HA; Zhao Z
    Pharm Res; 2022 Nov; 39(11):2673-2698. PubMed ID: 35794397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.