These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 293655)

  • 21. Role of hydrophobic forces in membrane protein asymmetry.
    Wickner WT
    Biochemistry; 1977 Jan; 16(2):254-8. PubMed ID: 836786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-lipid interactions. Studies of the M13 coat protein in dimyristoylphosphatidylcholine vesicles using parinaric acid.
    Kimelman D; Tecoma ES; Wolber PK; Hudson BS; Wickner WT; Simoni RD
    Biochemistry; 1979 Dec; 18(26):5874-80. PubMed ID: 518873
    [No Abstract]   [Full Text] [Related]  

  • 23. Physical behaviour of glycolipids in bilayer membranes: distribution and accessibility.
    Peters MW; Grant CW
    Adv Exp Med Biol; 1984; 174():119-31. PubMed ID: 6540046
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constrained modeling of spin-labeled major coat protein mutants from M13 bacteriophage in a phospholipid bilayer.
    Bashtovyy D; Marsh D; Hemminga MA; Páli T
    Protein Sci; 2001 May; 10(5):979-87. PubMed ID: 11316878
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photolabelling of cholera toxin subunits during membrane penetration.
    Wisnieski BJ; Bramhall JS
    Nature; 1981 Jan; 289(5795):319-21. PubMed ID: 6256663
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Study of the interaction of an alpha-helical transmembrane peptide with phosphatidylcholine bilayer membranes by means of densimetry and ultrasound velocimetry.
    Rybar P; Krivanek R; Samuely T; Lewis RN; McElhaney RN; Hianik T
    Biochim Biophys Acta; 2007 Jun; 1768(6):1466-78. PubMed ID: 17462583
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Procoat, the precursor of M13 coat protein, inserts post-translationally into the membrane of cells infected by wild-type virus.
    Date T; Wickner WT
    J Virol; 1981 Mar; 37(3):1087-9. PubMed ID: 7014926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular organization of the influenza virus surface. Studies using photoreactive and fluorescent labeled phospholipid probes.
    Bukrinskaya AG; Molotkovsky JG; Vodovozova EL; Manevich YM; Bergelson LD
    Biochim Biophys Acta; 1987 Feb; 897(2):285-92. PubMed ID: 3814590
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorotyrosine M13 coat protein: fluorine-19 nuclear magnetic resonance study of the motional properties of an integral membrane protein in phospholipid vesicles.
    Hagen DS; Weiner JH; Sykes BD
    Biochemistry; 1978 Sep; 17(18):3860-6. PubMed ID: 698203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solid-state NMR investigations of peptide-lipid interactions of the transmembrane domain of a plant-derived protein, Hcf106.
    Zhang L; Liu L; Maltsev S; Lorigan GA; Dabney-Smith C
    Chem Phys Lipids; 2013; 175-176():123-30. PubMed ID: 24075840
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Photogenerated reagents for membrane labeling. 1. Phenylnitrene formed within the lipid bilayer.
    Bayley H; Knowles JR
    Biochemistry; 1978 Jun; 17(12):2414-9. PubMed ID: 678519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of transmembrane dynamics of cholera toxin using photoreactive probes.
    Wisnieski BJ; Shiflett MA; Mekalanos J; Bramhall JS
    J Supramol Struct; 1979; 10(2):191-7. PubMed ID: 459511
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Steady-state compartmentalization of lipid membranes by active proteins.
    Sabra MC; Mouritsen OG
    Biophys J; 1998 Feb; 74(2 Pt 1):745-52. PubMed ID: 9533687
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Local dynamics of the M13 major coat protein in different membrane-mimicking systems.
    Stopar D; Spruijt RB; Wolfs CJ; Hemminga MA
    Biochemistry; 1996 Dec; 35(48):15467-73. PubMed ID: 8952500
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane attack complex of complement: distribution of subunits between the hydrocarbon phase of target membranes and water.
    Podack ER; Stoffel W; Esser AF; Müller-Eberhard HJ
    Proc Natl Acad Sci U S A; 1981 Jul; 78(7):4544-8. PubMed ID: 6270682
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Glycolipid membranes through atomistic simulations: effect of glucose and galactose head groups on lipid bilayer properties.
    Róg T; Vattulainen I; Bunker A; Karttunen M
    J Phys Chem B; 2007 Aug; 111(34):10146-54. PubMed ID: 17676793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Membrane assembly of M13 major coat protein: evidence for a structural adaptation in the hinge region and a tilted transmembrane domain.
    Spruijt RB; Wolfs CJ; Hemminga MA
    Biochemistry; 2004 Nov; 43(44):13972-80. PubMed ID: 15518546
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Labelling of egg phosphatidylcholine vesicles and myelin membrane with a photoreactive lipophilic reagent.
    Abu-Salah KM; Findlay JB
    Biochem J; 1977 Feb; 161(2):223-8. PubMed ID: 557976
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the role of anionic lipids in charged protein interactions with membranes.
    Vorobyov I; Allen TW
    Biochim Biophys Acta; 2011 Jun; 1808(6):1673-83. PubMed ID: 21073855
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.